MIT’s Diamond Qubits Redefine the Future of Quantum Computing – SciTechDaily
Posted: July 1, 2024 at 2:33 am
Researchers developed a modular fabrication process to produce a quantum-system-on-chip that integrates an array of artificial atom qubits onto a semiconductor chip. Credit: Sampson Wilcox and Linsen Li, RLE, edited
A new quantum-system-on-chip enables the efficient control of a large array of qubits, advancing toward practical quantum computing.
Researchers at MIT and MITRE have developed a scalable, modular quantum hardware platform, incorporating thousands of qubits on a single chip, promising enhanced control and scalability. Utilizing diamond color centers, this new architecture supports extensive quantum communication networks and introduces an innovative lock-and-release fabrication process to efficiently integrate these qubits with existing semiconductor technologies.
Imagine being able to quickly solve extremely complex problems that might take the worlds most powerful supercomputer decades to crack. This is the promise of quantum computers.
However, realizing this capability requires constructing a system with millions of interconnected building blocks called qubits. Making and controlling so many qubits in a hardware architecture is an enormous challenge that scientists around the world are striving to meet.
Toward this goal, researchers at MIT and MITRE have demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This quantum-system-on-chip (QSoC) architecture enables the researchers to precisely tune and control a dense array of qubits. Multiple chips could be connected using optical networking to create a large-scale quantum communication network.
By tuning qubits across 11 frequency channels, this QSoC architecture allows for a new proposed protocol of entanglement multiplexing for large-scale quantum computing.
The team spent years perfecting an intricate process for manufacturing two-dimensional arrays of atom-sized qubit microchiplets and transferring thousands of them onto a carefully prepared complementary metal-oxide semiconductor (CMOS) chip. This transfer can be performed in a single step.
We will need a large number of qubits, and great control over them, to really leverage the power of a quantum system and make it useful. We are proposing a brand new architecture and a fabrication technology that can support the scalability requirements of a hardware system for a quantum computer, says Linsen Li, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this architecture.
Lis co-authors include Ruonan Han, an associate professor in EECS, leader of the Terahertz Integrated Electronics Group, and member of the Research Laboratory of Electronics (RLE); senior author Dirk Englund, professor of EECS, principal investigator of the Quantum Photonics and Artificial Intelligence Group and of RLE; as well as others at MIT, Cornell University, the Delft Institute of Technology, the U.S. Army Research Laboratory, and the MITRE Corporation. The paper was published recently in Nature.
While there are many types of qubits, the researchers chose to use diamond color centers because of their scalability advantages. They previously used such qubits to produce integrated quantum chips with photonic circuitry.
Qubits made from diamond color centers are artificial atoms that carry quantum information. Because diamond color centers are solid-state systems, the qubit manufacturing is compatible with modern semiconductor fabrication processes. They are also compact and have relatively long coherence times, which refers to the amount of time a qubits state remains stable, due to the clean environment provided by the diamond material.
In addition, diamond color centers have photonic interfaces which allows them to be remotely entangled, or connected, with other qubits that arent adjacent to them.
The conventional assumption in the field is that the inhomogeneity of the diamond color center is a drawback compared to identical quantum memory like ions and neutral atoms. However, we turn this challenge into an advantage by embracing the diversity of the artificial atoms: Each atom has its own spectral frequency. This allows us to communicate with individual atoms by voltage tuning them into resonance with a laser, much like tuning the dial on a tiny radio, says Englund.
This is especially difficult because the researchers must achieve this at a large scale to compensate for the qubit inhomogeneity in a large system.
To communicate across qubits, they need to have multiple such quantum radios dialed into the same channel. Achieving this condition becomes near-certain when scaling to thousands of qubits. To this end, the researchers surmounted that challenge by integrating a large array of diamond color center qubits onto a CMOS chip which provides the control dials. The chip can be incorporated with built-in digital logic that rapidly and automatically reconfigures the voltages, enabling the qubits to reach full connectivity.
This compensates for the in-homogenous nature of the system. With the CMOS platform, we can quickly and dynamically tune all the qubit frequencies, Li explains.
To build this QSoC, the researchers developed a fabrication process to transfer diamond color center microchiplets onto a CMOS backplane at a large scale.
They started by fabricating an array of diamond color center microchiplets from a solid block of diamond. They also designed and fabricated nanoscale optical antennas that enable more efficient collection of the photons emitted by these color center qubits in free space.
Then, they designed and mapped out the chip from the semiconductor foundry. Working in the MIT.nano cleanroom, they post-processed a CMOS chip to add microscale sockets that match up with the diamond microchiplet array.
They built an in-house transfer setup in the lab and applied a lock-and-release process to integrate the two layers by locking the diamond microchiplets into the sockets on the CMOS chip. Since the diamond microchiplets are weakly bonded to the diamond surface, when they release the bulk diamond horizontally, the microchiplets stay in the sockets.
Because we can control the fabrication of both the diamond and the CMOS chip, we can make a complementary pattern. In this way, we can transfer thousands of diamond chiplets into their corresponding sockets all at the same time, Li says.
The researchers demonstrated a 500-micron by 500-micron area transfer for an array with 1,024 diamond nanoantennas, but they could use larger diamond arrays and a larger CMOS chip to further scale up the system. In fact, they found that with more qubits, tuning the frequencies actually requires less voltage for this architecture.
In this case, if you have more qubits, our architecture will work even better, Li says.
The team tested many nanostructures before they determined the ideal microchiplet array for the lock-and-release process. However, making quantum microchiplets is no easy task, and the process took years to perfect.
We have iterated and developed the recipe to fabricate these diamond nanostructures in MIT cleanroom, but it is a very complicated process. It took 19 steps of nanofabrication to get the diamond quantum microchiplets, and the steps were not straightforward, he adds.
Alongside their QSoC, the researchers developed an approach to characterize the system and measure its performance on a large scale. To do this, they built a custom cryo-optical metrology setup.
Using this technique, they demonstrated an entire chip with over 4,000 qubits that could be tuned to the same frequency while maintaining their spin and optical properties. They also built a digital twin simulation that connects the experiment with digitized modeling, which helps them understand the root causes of the observed phenomenon and determine how to efficiently implement the architecture.
In the future, the researchers could boost the performance of their system by refining the materials they used to make qubits or developing more precise control processes. They could also apply this architecture to other solid-state quantum systems.
Reference: Heterogeneous integration of spinphoton interfaces with a CMOS platform by Linsen Li, Lorenzo De Santis, Isaac B. W. Harris, Kevin C. Chen, Yihuai Gao, Ian Christen, Hyeongrak Choi, Matthew Trusheim, Yixuan Song, Carlos Errando-Herranz, Jiahui Du, Yong Hu, Genevieve Clark, Mohamed I. Ibrahim, Gerald Gilbert, Ruonan Han and Dirk Englund, 29 May 2024, Nature. DOI: 10.1038/s41586-024-07371-7
This work was supported by the MITRE Corporation Quantum Moonshot Program, the U.S. National Science Foundation, the U.S. Army Research Office, the Center for Quantum Networks, and the European Unions Horizon 2020 Research and Innovation Program.
Read the original post:
MIT's Diamond Qubits Redefine the Future of Quantum Computing - SciTechDaily
- Intel Achieves Milestone in Quantum Practicality with 'Horse Ridge' - Database Trends and Applications [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- 2-Day Conference: The Future of Quantum Computing, Networking & Sensors (New York, United States - April 2-3, 2020) - Benzinga [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- IBM and the University of Tokyo Launch Quantum Computing Initiative for Japan - Quantaneo, the Quantum Computing Source [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- What We Learned in Science News 2019 - The New York Times [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- IBM and the U. of Tokyo launch quantum computing initiative for Japan | - University Business [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- 2020 and beyond: Tech trends and human outcomes - Accountancy Age [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- The Quantum Computing Decade Is ComingHeres Why You Should Care - Observer [Last Updated On: December 21st, 2019] [Originally Added On: December 21st, 2019]
- Donna Strickland appointed to Order of Canada - University of Rochester [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- 20 technologies that could change your life in the next decade - Economic Times [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- 5 open source innovation predictions for the 2020s - TechRepublic [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- The 5 Most Important Federal Government Tech Predictions to Watch in 2020 - Nextgov [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Information teleported between two computer chips for the first time - New Atlas [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- How This Breakthrough Makes Silicon-Based Qubit Chips The Future of Quantum Computing - Analytics India Magazine [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Quantum Supremacy and the Regulation of Quantum Technologies - The Regulatory Review [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Physicists Just Achieved The First-Ever Quantum Teleportation Between Computer Chips - ScienceAlert [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- The 12 Most Important and Stunning Quantum Experiments of 2019 - Livescience.com [Last Updated On: December 30th, 2019] [Originally Added On: December 30th, 2019]
- Memorial ceremony held for Peter Wittek, U of T professor who went missing in India - Varsity [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Is quantum innovation the future of tech? - GovInsider [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Enterprise hits and misses - quantum gets real, Koch buys Infor, and Shadow's failed app gets lit up - Diginomica [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- White House reportedly aims to double AI research budget to $2B - TechCrunch [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Opinion | Prepare for a world of quantum haves and have-nots - Livemint [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- White House Earmarks New Money for A.I. and Quantum Computing - The New York Times [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- New Particle Accelerator In New York To Probe Protons And Neutrons - Here And Now [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- NASA Soars and Others Plummet in Trump's Budget Proposal - Scientific American [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- For the tech world, New Hampshire is anyone's race - Politico [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Quantum Internet Workshop Begins Mapping the Future of Quantum Communications - HPCwire [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Quantum Computing: How To Invest In It, And Which Companies Are Leading the Way? - Nasdaq [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Deltec Bank, Bahamas Quantum Computing Will have Positive Impacts on Portfolio Optimization, Risk Analysis, Asset Pricing, and Trading Strategies -... [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- NIST Works on the Industries of the Future in Buildings from the Past - Nextgov [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- Top AI Announcements Of The Week: TensorFlow Quantum And More - Analytics India Magazine [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- Army Project Touts New Error Correction Method That May be Key Step Toward Quantum Computing - HPCwire [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- IDC Survey Finds Optimism That Quantum Computing Will Result in Competitive Advantage - HPCwire [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- Inside the race to build the best quantum computer on Earth - Economic Times [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- Honeywell Claims to Have Built the "Most Powerful" Quantum Computer - Interesting Engineering [Last Updated On: March 15th, 2020] [Originally Added On: March 15th, 2020]
- Tech reality check: business must move beyond the hype on digital technology - CBI [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Quantum Computing Market 2020 | Growing Rapidly with Significant CAGR, Leading Players, Innovative Trends and Expected Revenue by 2026 - Skyline... [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Reaching the Singularity May be Humanity's Greatest and Last Accomplishment - Air & Space Magazine [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Flux-induced topological superconductivity in full-shell nanowires - Science Magazine [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Research by University of Chicago PhD Student and EPiQC Wins IBM Q Best Paper - Quantaneo, the Quantum Computing Source [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Picking up the quantum technology baton - The Hindu [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- Devs: Alex Garland on Tech Company Cults, Quantum Computing, and Determinism - Den of Geek UK [Last Updated On: March 28th, 2020] [Originally Added On: March 28th, 2020]
- 1000 Words or So About The New QuantumAI Scam - TechTheLead [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- What Lies In the Future of Mechanical Design Industry - Interesting Engineering [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- 3 High-Growth Trends to Invest In Now - Investorplace.com [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- Inside the Global Race to Fight COVID-19 Using the World's Fastest Supercomputers - Scientific American [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- Quantum computing at the nanoscale - News - The University of Sydney [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- Here's when we can expect the next major leap in quantum computing - TechRepublic [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- Quantum Computing: What You Need To Know - Inc42 Media [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- How quantum computing will be used to model elections - TechRepublic [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- Quantum Computing Startup Raises $215 Million for Faster Device - Bloomberg [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- More free, discounted tech for governments responding to COVID-19 - GCN.com [Last Updated On: April 10th, 2020] [Originally Added On: April 10th, 2020]
- Securing IoT in the Quantum Age - Eetasia.com [Last Updated On: April 10th, 2020] [Originally Added On: April 10th, 2020]
- Microsoft invests in PsiQuantum, a startup which is building the worlds first useful quantum computer - MSPoweruser - MSPoweruser [Last Updated On: April 10th, 2020] [Originally Added On: April 10th, 2020]
- RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register [Last Updated On: April 10th, 2020] [Originally Added On: April 10th, 2020]
- Pentagon wants commercial, space-based quantum sensors within 2 years - The Sociable [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Defense budget cuts following the pandemic will be hard to swallow | TheHill - The Hill [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Science of Star Trek - The UCSB Current [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Quantum Computing Market 2020 Break Down by Top Companies, Applications, Challenges, Opportunities and Forecast 2026 Cole Reports - Cole of Duty [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- World coronavirus Dispatch: Quantum Computing Market Recent Trends and Developments, Challenges and Opportunities, key drivers and Restraints over the... [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- The future of quantum computing in the cloud - TechTarget [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Quantum computing heats up down under as researchers reckon they know how to cut costs and improve stability - The Register [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Quantum Computing With Particles Of Light: A $215 Million Gamble - Forbes [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- Hot Qubits Could Deliver a Quantum Computing Breakthrough - Popular Mechanics [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- New way of developing topological superconductivity discovered - Chemie.de [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Deltec Bank, Bahamas - Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sector - marketscreener.com [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Muquans and Pasqal partner to advance quantum computing - Quantaneo, the Quantum Computing Source [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design - QS WOW News [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Announcing the IBM Quantum Challenge - Quantaneo, the Quantum Computing Source [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Trump betting millions to lay the groundwork for quantum internet in the US - CNBC [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]
- Doctor Strange might want to trade his Time Stone for time crystals that are doing some otherworldly things - SYFY WIRE [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- Quantum Information Processing Market 2020 | Know the Latest COVID19 Impact Analysis And Strategies of Key Players: 1QB Information Technologies,... [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- This Twist on Schrdinger's Cat Paradox Has Major Implications for Quantum Theory - Scientific American [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- A Meta-Theory of Physics Could Explain Life, the Universe, Computation, and More - Gizmodo [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- This Week's Awesome Tech Stories From Around the Web (Through August 22) - Singularity Hub [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- Will Quantum Computers Really Destroy Bitcoin? A Look at the Future of Crypto, According to Quantum Physicist Anastasia Marchenkova - The Daily Hodl [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- Has the world's most powerful computer arrived? - The National [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?) - Forbes [Last Updated On: August 23rd, 2020] [Originally Added On: August 23rd, 2020]
- Vitalik Buterin highlights major threats to Bitcoin BTC and Ethereum ETH - Digital Market News [Last Updated On: September 2nd, 2020] [Originally Added On: September 2nd, 2020]
- Two Pune Research Institutes Are Building India's First Optical Atomic Clocks - The Wire Science [Last Updated On: September 2nd, 2020] [Originally Added On: September 2nd, 2020]