The future of artificial intelligence and quantum computing – Military & Aerospace Electronics
Posted: September 1, 2020 at 10:55 am
NASHUA, N.H. -Until the 21st Century, artificial intelligence (AI) and quantum computers were largely the stuff of science fiction, although quantum theory and quantum mechanics had been around for about a century. A century of great controversy, largely because Albert Einstein rejected quantum theory as originally formulated, leading to his famous statement, God does not play dice with the universe.
Today, however, the debate over quantum computing is largely about when not if these kinds of devices will come into full operation. Meanwhile, other forms of quantum technology, such as sensors, already are finding their way into military and civilian applications.
Quantum technology will be as transformational in the 21st Century as harnessing electricity was in the 19th, Michael J. Biercuk, founder and CEO of Q-CTRL Pty Ltd in Sydney, Australia, and professor of Quantum Physics & Quantum Technologies at the University of Sydney, told the U.S. Office of Naval Research in a January 2019 presentation.
On that, there is virtually universal agreement. But when and how remains undetermined.
For example, asked how and when quantum computing eventually may be applied to high-performance embedded computing (HPEC), Tatjana Curcic, program manager for Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) of the U.S. Defense Advanced Research Projects Agency in Arlington, Va., says its an open question.
Until just recently, quantum computing stood on its own, but as of a few years ago people are looking more and more into hybrid approaches, Curcic says. Im not aware of much work on actually getting quantum computing into HPEC architecture, however. Its definitely not mainstream, probably because its too early.
As to how quantum computing eventually may influence the development, scale, and use of AI, she adds:
Thats another open question. Quantum machine learning is a very active research area, but is quite new. A lot of people are working on that, but its not clear at this time what the results will be. The interface between classical data, which AI is primarily involved with, and quantum computing is still a technical challenge.
Quantum information processing
According to DARPAs ONISQ webpage, the program aims to exploit quantum information processing before fully fault-tolerant quantum computers are realized.This quantum computer based on superconducting qubits is inserted into a dilution refrigerator and cooled to a temperature less than 1 Kelvin. It was built at IBM Research in Zurich.
This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges, the agency states. ONISQ researchers will be tasked with developing quantum systems that are scalable to hundreds or thousands of qubits with longer coherence times and improved noise control.
Researchers will also be required to efficiently implement a quantum optimization algorithm on noisy intermediate-scale quantum devices, optimizing allocation of quantum and classical resources. Benchmarking will also be part of the program, with researchers making a quantitative comparison of classical and quantum approaches. In addition, the program will identify classes of problems in combinatorial optimization where quantum information processing is likely to have the biggest impact. It will also seek to develop methods for extending quantum advantage on limited size processors to large combinatorial optimization problems via techniques such as problem decomposition.
The U.S. government has been the leader in quantum computing research since the founding of the field, but that too is beginning to change.
In the mid-90s, NSA [the U.S. National Security Agency at Fort Meade, Md.] decided to begin on an open academic effort to see if such a thing could be developed. All that research has been conducted by universities for the most part, with a few outliers, such as IBM, says Q-CTRLs Biercuk. In the past five years, there has been a shift toward industry-led development, often in cooperation with academic efforts. Microsoft has partnered with universities all over the world and Google bought a university program. Today many of the biggest hardware developments are coming from the commercial sector.
Quantum computing remains in deep space research, but there are hardware demonstrations all over the world. In the next five years, we expect the performance of these machines to be agented to the point where we believe they will demonstrate a quantum advantage for the first time. For now, however, quantum computing has no advantages over standard computing technology. quantum computers are research demonstrators and do not solve any computing problems at all. Right now, there is no reason to use quantum computers except to be ready when they are truly available.
AI and quantum computing
Nonetheless, the race to develop and deploy AI and quantum computing is global, with the worlds leading military powers seeing them along with other breakthrough technologies like hypersonics making the first to successfully deploy as dominant as the U.S. was following the first detonations of atomic bombs. That is especially true for autonomous mobile platforms, such as unmanned aerial vehicles (UAVs), interfacing with those vehicles onboard HPEC.
Of the two, AI is the closest to deployment, but also the most controversial. A growing number of the worlds leading scientists, including the late Stephen Hawking, warn real-world AI could easily duplicate the actions of the fictional Skynet in the Terminator movie series. Launched with total control over the U.S. nuclear arsenal, Skynet became sentient and decided the human race was a dangerous infestation that needed to be destroyed.
The development of full artificial intelligence could spell the end of the human race. Once humans develop artificial intelligence, it will take off on its own and redesign itself at an ever-increasing rate. Humans, who are limited by slow biological evolution, couldnt compete and would be superseded. Stephen Hawking (2014)
Such dangers have been recognized at least as far back as the publication of Isaac Asimovs short story, Runabout, in 1942, which included his Three Laws of Robotics, designed to control otherwise autonomous robots. In the story, the laws were set down in 2058:
First Law A robot may not injure a human being or, through inaction, allow a human being to come to harm.
Second Law A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
Third Law A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
Whether it would be possible to embed and ensure unbreakable compliance with such laws in an AI system is unknown. But limited degrees of AI, known as machine learning, already are in widespread use by the military and advanced stages of the technology, such as deep learning, almost certainly will be deployed by one or more nations as they become available. More than 50 nations already are actively researching battlefield robots.
Military quantum computing
AI-HPEC would give UAVs, next-generation cruise missiles, and even maneuverable ballistic missiles the ability to alter course to new targets at any point after launch, recognize counter measures, avoid, and misdirect or even destroy them.
Quantum computing, on the other hand, is seen by some as providing little, if any, advantage over traditional computer technologies, by many as requiring cooling and size, weight and power (SWaP) improvements not possible with current technologies to make it applicable to mobile platforms and by most as being little more than a research tool for perhaps decades to come.
Perhaps the biggest stumbling block to a mobile platform-based quantum computing is cooling it currently requires a cooling unit, at near absolute zero, the Military trusted computing experts are considering new generations of quantum computing for creating nearly unbreakable encryption for super-secure defense applications.size of a refrigerator to handle a fractional piece of quantum computing.
A lot of work has been done and things are being touted as operational, but the most important thing to understand is this isnt some simple physical thing you throw in suddenly and it works. That makes it harder to call it deployable youre not going to strap a quantum computing to a handheld device. A lot of solutions are still trying to deal with cryogenics and how do you deal with deployment of cryo, says Tammy Carter, senior product manager for GPGPUs and software products at Curtiss-Wright Defense Solutions in Ashburn, Va.
AI is now a technology in deployment. Machine learning is pretty much in use worldwide, Carter says. Were in a migration of figuring out how to use it with the systems we have. quantum computing will require a lot of engineering work and demand may not be great enough to push the effort. From a cryogenically cooled electronics perspective, I dont think there is any insurmountable problem. It absolutely can be done, its just a matter of decision making to do it, prioritization to get it done. These are not easily deployed technologies, but certainly can be deployed.
Given its current and expected near-term limitations, research has increased on the development of hybrid systems.
The longer term reality is a hybrid approach, with the quantum system not going mobile any time soon, says Brian Kirby, physicist in the Army Research Laboratory Computational & Informational Sciences Directorate in Adelphi, Md. Its a mistake to forecast a timeline, but Im not sure putting a quantum computing on such systems would be valuable. Having the quantum computing in a fixed location and linked to the mobile platform makes more sense, for now at least. There can be multiple quantum computers throughout the country; while individually they may have trouble solving some problems, networking them would be more secure and able to solve larger problems.
Broadly, however, quantum computing cant do anything a practical home computer cant do, but can potentially solve certain problems more efficiently, Kirby continues. So youre looking at potential speed-up, but there is no problem a quantum computing can solve a normal computer cant. Beyond the basics of code-breaking and quantum simulations affecting material design, right now we cant necessarily predict military applications.
Raising concerns
In some ways similar to AI, quantum computing raises nearly as many concerns as it does expectations, especially in the area of security. The latest Thales Data Threat Report says 72 percent of surveyed security experts worldwide believe quantum computing will have a negative impact on data security within the next five years.
At the same time, quantum computing is forecast to offer more robust cryptography and security solutions. For HPEC, that duality is significant: quantum computing can make it more difficult to break the security of mobile platforms, while simultaneously making it easier to do just that.
Quantum computers that can run Shors algorithm [leveraging quantum properties to factor very large numbers efficiently] are expected to become available in the next decade. These algorithms can be used to break conventional digital signature schemes (e.g. RSA or ECDSA), which are widely used in embedded systems today. This puts these systems at risk when they are used in safety-relevant long-term applications, such as automotive systems or critical infrastructures. To mitigate this risk, classical digital signature schemes used must be replaced by schemes secure against quantum computing-based attacks, according to the August 2019 proceedings of the 14th International Conference on Availability, Reliability & Securitys Post-Quantum Cryptography in Embedded Systems report.
The security question is not quite so clean-cut as armor/anti-armor, but there is a developing bifurcation between defensive and offensive applications. On the defense side, deployed quantum systems are looked at to provide encoded communications. Experts say it seems likely the level of activity in China about quantum communications, which has been a major focus for years, runs up against the development of quantum computing in the U.S. The two aspects are not clearly one-against-one, but the two moving independently.
Googles quantum supremacy demonstration has led to a rush on finding algorithms robust against quantum attack. On the quantum communications side, the development of attacks on such systems has been underway for years, leading to a whole field of research based on identifying and exploiting quantum attacks.
Quantum computing could also help develop revolutionary AI systems. Recent efforts have demonstrated a strong and unexpected link between quantum computation and artificial neural networks, potentially portending new approaches to machine learning. Such advances could lead to vastly improved pattern recognition, which in turn would permit far better machine-based target identification. For example, the hidden submarine in our vast oceans may become less-hidden in a world with AI-empowered quantum computers, particularly if they are combined with vast data sets acquired through powerful quantum-enabled sensors, according to Q-CTRLs Biercuk.
Even the relatively mundane near-term development of new quantum-enhanced clocks may impact security, beyond just making GPS devices more accurate, Biercuk continues. Quantum-enabled clocks are so sensitive that they can discern minor gravitational anomalies from a distance. They thus could be deployed by military personnel to detect underground, hardened structures, submarines or hidden weapons systems. Given their potential for remote sensing, advanced clocks may become a key embedded technology for tomorrows warfighter.
Warfighter capabilities
The early applications of quantum computing, while not embedded on mobile platforms, are expected to enhance warfighter capabilities significantly.
Jim Clark, director of quantum hardware at Intel Corp. in Santa Clara, Calif., shows one of the companys quantum processors.There is a high likelihood quantum computing will impact ISR [intelligence, surveillance and reconnaissance], solving logistics problems more quickly. But so much of this is in the basic research stage. While we know the types of problems and general application space, optimization problems will be some of the first where we will see advantages from quantum computing, says Sara Gamble, quantum information sciences program manager at ARL.
Biercuk says he agrees: Were not really sure there is a role for quantum computing in embedded computing just yet. quantum computing is right now very large systems embedded in mainframes, with access by the cloud. You can envision embedded computing accessing quantum computing via the cloud, but they are not likely to be very small, agile processors you would embed in a SWAP-constrained environment.
But there are many aspects of quantum technology beyond quantum computing; the combination of quantum sensors could allow much better detection in the field, Biercuk continues. The biggest potential impact comes in the areas of GPS denial, which has become one of the biggest risk factors identified in every blueprint around the world. quantum computing plays directly into this to perform dead reckoning navigation in GPS denial areas.
DARPAs Curcic also says the full power of quantum computing is still decades away, but believes ONISQ has the potential to help speed its development.
The main two approaches industry is using is superconducting quantum computing and trapped ions. We use both of those, plus cold atoms [Rydberg atoms]. We are very excited about ONISQ and seeing if we can get anything useful over classical computing. Four teams are doing hardware development with those three approaches, she says.
Because these are noisy systems, its very difficult to determine if there will be any advantages. The hope is we can address the optimization problem faster than today, which is what were working on with ONISQ. Optimization problems are everywhere, so even a small improvement would be valuable.
Beyond todays capabilities
As to how quantum computing and AI may impact future warfare, especially through HPEC, she adds: I have no doubt quantum computing will be revolutionary and well be able to do things beyond todays capabilities. The possibilities are pretty much endless, but what they are is not crystal clear at this point. Its very difficult, with great certainly, to predict what quantum computing will be able to do. Well just have to build and try. Thats why today is such an exciting time.
Curtiss Wrights Carter says he believes quantum computing and AI will be closely linked with HPEC in the future, once current limitations with both are resolved.
AI itself is based on a lot of math being done in parallel for probability answers, similar to modeling the neurons in the brain highly interconnected nodes and interdependent math calculations. Imagine a small device trying to recognize handwriting, Carter says. You run every pixel of that through lots and lots of math, combining and mixing, cutting some, amplifying others, until you get a 98 percent answer at the other end. quantum computing could help with that and researchers are looking at how you would do that, using a different level of parallel math.
How quantum computing will be applied to HPEC will be the big trick, how to get that deployed. Imagine were a SIGINT [signals intelligence] platform land, air or sea there are a lot of challenges, such as picking the right signal out of the air, which is not particularly easy, Carter continues. Once you achieve pattern recognition, you want to do code breaking to get that encrypted traffic immediately. Getting that on a deployed platform could be useful; otherwise you bring your data back to a quantum computing in a building, but that means you dont get the results immediately.
The technology research underway today is expected to show progress toward making quantum computing more applicable to military needs, but it is unlikely to produce major results quickly, especially in the area of HPEC.
Trapped ions and superconducting circuits still require a lot of infrastructure to make them work. Some teams are working on that problem, but the systems still remain room-sized. The idea of quantum computing being like an integrated circuit you just put on a circuit board were a very long way from that, Biercuk says. The systems are getting smaller, more compact, but there is a very long way to go to deployable, embeddable systems. Position, navigation and timing systems are being reduced and can be easily deployed on aircraft. Thats probably where the technology will remain in the next 20 years; but, eventually, with new technology development, quantum computing may be reduced to more mobile sizes.
The next 10 years are about achieving quantum advantage with the systems available now or iterations. Despite the acceleration we have seen, there are things that are just hard and require a lot of creativity, Biercuk continues. Were shrinking the hardware, but that hardware still may not be relevant to any deployable system. In 20 years, we may have machines that can do the work required, but in that time we may only be able to shrink them to a size that can fit on an aircraft carrier local code-breaking engines. To miniaturize this technology to put it on, say, a body-carried system, we just dont have any technology basis to claim we will get there even in 20 years. Thats open to creativity and discovery.
Even with all of the research underway worldwide, one question remains dominant.
The general challenge is it is not clear what we will use quantum computing for, notes Rad Balu, a computer scientist in ARLs Computational & Informational Sciences Directorate.
The rest is here:
The future of artificial intelligence and quantum computing - Military & Aerospace Electronics
- Why Move Fast and Break Things Doesn't Work Anymore - Harvard Business Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Security leaders fear that quantum computing developments will outpace security technologies - Continuity Central [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Inside the weird, wild, and wondrous world of quantum video games - Digital Trends [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- This Week in Tech: What on Earth Is a Quantum Computer? - The New York Times [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Charles Hoskinson Predicts Economic Collapse, Rise of Quantum Computing, Space Travel and Cryptocurrency in the 2020s - The Daily Hodl [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Jeffrey Epstein scandal: MIT professor put on leave, he 'failed to inform' college that sex offender made donations - CNBC [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Were approaching the limits of computer power we need new programmers now - The Guardian [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Is Quantum Technology The Future Of The World? - The Coin Republic [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- Google and IBM square off in Schrodingers catfight over quantum supremacy - The Register [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- CES 2020: IBM and Daimler teaming up for a quantum leap in battery tech - CNET [Last Updated On: January 12th, 2020] [Originally Added On: January 12th, 2020]
- 5G, AI and Quantum Computing: Who Knows Where It Will All Lead? - Planet Vending [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- University of Sheffield launches Quantum centre to develop the technologies of tomorrow - Quantaneo, the Quantum Computing Source [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Quantum networking projected to be $5.5 billion market in 2025 - TechRepublic [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Delta Partners with IBM to Explore Quantum Computing - Database Trends and Applications [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- The End Of The Digital Revolution Is Coming: Here's What's Next - Innovation Excellence [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- What Is Quantum Computing, And How Can It Unlock Value For Businesses? - Computer Business Review [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- TensorFlow gets its quantum of solace, lid lifted on 'all-seeing crime-detecting' AI upstart, and more - The Register [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Career navigation Be at the core or be at the edge - The Financial Express BD [Last Updated On: March 19th, 2020] [Originally Added On: March 19th, 2020]
- Work from home: Improve your security with MFA - We Live Security [Last Updated On: March 19th, 2020] [Originally Added On: March 19th, 2020]
- Quantum Computing for Everyone - The Startup - Medium [Last Updated On: March 19th, 2020] [Originally Added On: March 19th, 2020]
- Quantum computing is right around the corner, but cooling is a problem. What are the options? - Diginomica [Last Updated On: March 19th, 2020] [Originally Added On: March 19th, 2020]
- Quantum Computing: Will It Actually Produce Jobs? - Dice Insights [Last Updated On: March 19th, 2020] [Originally Added On: March 19th, 2020]
- Disrupt The Datacenter With Orchestration - The Next Platform [Last Updated On: April 2nd, 2020] [Originally Added On: April 2nd, 2020]
- Q-CTRL to Host Live Demos of 'Quantum Control' Tools - Quantaneo, the Quantum Computing Source [Last Updated On: April 2nd, 2020] [Originally Added On: April 2nd, 2020]
- We're Getting Closer to the Quantum Internet, But What Is It? - HowStuffWorks [Last Updated On: April 2nd, 2020] [Originally Added On: April 2nd, 2020]
- D-Wave makes its quantum computers free to anyone working on the coronavirus crisis - VentureBeat [Last Updated On: April 2nd, 2020] [Originally Added On: April 2nd, 2020]
- Making Sense of the Science and Philosophy of Devs - The Ringer [Last Updated On: April 16th, 2020] [Originally Added On: April 16th, 2020]
- Alex Garland on 'Devs,' free will and quantum computing - Engadget [Last Updated On: April 16th, 2020] [Originally Added On: April 16th, 2020]
- COVID-19: Quantum computing could someday find cures for coronaviruses and other diseases - TechRepublic [Last Updated On: April 16th, 2020] [Originally Added On: April 16th, 2020]
- Calling On AI And Quantum Computing To Fight The Coronavirus - Forbes [Last Updated On: April 16th, 2020] [Originally Added On: April 16th, 2020]
- Quantum computer chips demonstrated at the highest temperatures ever - New Scientist News [Last Updated On: April 16th, 2020] [Originally Added On: April 16th, 2020]
- New Princeton study takes superconductivity to the edge - Princeton University [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Devs: Here's the real science behind the quantum computing TV show - New Scientist News [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Online course trains students in the bizarre world of quantum computing - Livescience.com [Last Updated On: May 2nd, 2020] [Originally Added On: May 2nd, 2020]
- Between God and Science in the Surreal Silicon Valley of Devs - The Nation [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards - MIT News [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- Recent Research Answers the Future of Quantum Machine Learning on COVID-19 - Analytics Insight [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- David Graves to Head New Research at PPPL for Plasma Applications in Industry and Quantum Information Science - HPCwire [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- IonQ CEO Peter Chapman on how quantum computing will change the future of AI - VentureBeat [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- VTT to acquire Finland's first quantum computer seeking to bolster Finland's and Europe's competitiveness - Quantaneo, the Quantum Computing Source [Last Updated On: May 12th, 2020] [Originally Added On: May 12th, 2020]
- Light, fantastic: the path ahead for faster, smaller computer processors - News - The University of Sydney [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering - HPCwire [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- Video: The Future of Quantum Computing with IBM - insideHPC [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- Quantum computing analytics: Put this on your IT roadmap - TechRepublic [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- Quantum computing will (eventually) help us discover vaccines in days - VentureBeat [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- IBM Z mainframes revived by Red Hat, AI and security - TechTarget [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- Toshiba Exits PC Business 35 Years of IBM Compatible PCs - Electropages [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- 6 new degrees approved, including graduate degrees in biostatistics and quantum information science: News at IU - IU Newsroom [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- The race to building a fully functional quantum stack - TechCrunch [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- IEEE International Conference on Quantum Computing and Engineering (QCE20) Transitions to All-Virtual Event - PRNewswire [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- Major quantum computational breakthrough is shaking up physics and maths - The Conversation UK [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- Quantum mechanics is immune to the butterfly effect - The Economist [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- Quantum Computing for the Next Generation of Computer Scientists and Researchers - Campus Technology [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- Honeywell Wants To Show What Quantum Computing Can Do For The World - Forbes [Last Updated On: August 14th, 2020] [Originally Added On: August 14th, 2020]
- I confess, I'm scared of the next generation of supercomputers - TechRadar [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- This Equation Calculates The Chances We Live In A Computer Simulation - Discover Magazine [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- Q-NEXT collaboration awarded National Quantum Initiative funding - University of Wisconsin-Madison [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- Quantum Cryptography Market Research Analysis Including Growth Factors, Types And Application By Regions From 2024 - Kentucky Journal 24 [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- Researchers Found Another Impediment for Quantum Computers to Overcome - Dual Dove [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing,... [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- Could Quantum Computing Progress Be Halted by Background Radiation? - Singularity Hub [Last Updated On: September 1st, 2020] [Originally Added On: September 1st, 2020]
- IBM plans to build a 1121 qubit system. What does this technology mean? - The Hindu [Last Updated On: September 26th, 2020] [Originally Added On: September 26th, 2020]
- Inaugural OSA Quantum 2.0 Conference Featured Talks on Emerging Technologies - Novus Light Technologies Today [Last Updated On: September 26th, 2020] [Originally Added On: September 26th, 2020]
- IBM, Alphabet and well-funded startups in the race for quantum supremacy - IT Brief Australia [Last Updated On: September 26th, 2020] [Originally Added On: September 26th, 2020]
- IBM Partners With HBCUs to Diversify Quantum Computing Workforce - Diverse: Issues in Higher Education [Last Updated On: September 26th, 2020] [Originally Added On: September 26th, 2020]
- Baidu offers quantum computing from the cloud - VentureBeat [Last Updated On: September 26th, 2020] [Originally Added On: September 26th, 2020]
- oneAPI Academic Center of Excellence Established at the Heidelberg University Computing Center (URZ) - HPCwire [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- Berkeley Lab Technologies Honored With 7 R&D 100 Awards - Lawrence Berkeley National Laboratory [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- Global QC Market Projected to Grow to More Than $800 million by 2024 - HPCwire [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- Schrdingers Web offers a sneak peek at the quantum internet - Science News [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- ESAs -Week: Digital Twin Earth, Quantum Computing and AI Take Center Stage - SciTechDaily [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- A new claimant for "most powerful quantum computer" - Axios [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- SC20 Invited Speakers Tackle Challenges for the Earth, Its Inhabitants, and Our Security Using 'More Than HPC' - HPCwire [Last Updated On: October 8th, 2020] [Originally Added On: October 8th, 2020]
- Google's Billion Dollar News, Commercial Quantum Computers And More In This Week's Top News - Analytics India Magazine [Last Updated On: October 8th, 2020] [Originally Added On: October 8th, 2020]
- Canadian quantum computing firms partner to spread the technology - IT World Canada [Last Updated On: October 8th, 2020] [Originally Added On: October 8th, 2020]
- Quantum computing: Photon startup lights up the future of computers and cryptography - ZDNet [Last Updated On: October 8th, 2020] [Originally Added On: October 8th, 2020]
- Race for quantum supremacy gathers momentum with several companies joining bandwagon, says GlobalData - Quantaneo, the Quantum Computing Source [Last Updated On: October 11th, 2020] [Originally Added On: October 11th, 2020]
- 4 Reasons Why Now Is the Best Time to Start With Quantum Computing - Medium [Last Updated On: October 11th, 2020] [Originally Added On: October 11th, 2020]
- What is Quantum Computing, and How does it Help Us? - Analytics Insight [Last Updated On: October 11th, 2020] [Originally Added On: October 11th, 2020]
- 01 Communique to Present at the Benzinga Global Small Cap Conference on December 8 - IT News Online [Last Updated On: November 30th, 2020] [Originally Added On: November 30th, 2020]