Learning by machines, for machines: Artificial Intelligence in the world’s largest particle detector – ATLAS Experiment at CERN
Posted: June 11, 2024 at 2:48 am
In todays age, you can't do much without interfacing with artificial intelligence and machine learning (AI/ML). This technology lets you unlock your phone via face recognition, helps curate your social media feed and powers internet search. In the future, it promises to automate tasks as mundane as driving a car and as cerebral as scientific outreach. Its clear transformative capability has captured our collective attention, sparking dialogue across scientific communities, governments and the general public, alike. But long before ChatGPT or DALL-E, the basic statistical principles that underpin the world's most sophisticated ML tools were hard at work in the field of high-energy collider physics. Today, they are enabling unprecedented progress in understanding the nature of our fundamental universe.
High-energy physics (HEP) can trace its relationship with ML back many decades, with the earliest neural networks coming into play in the 1990s. ML algorithms improved Higgs-boson searches at CERNs LEP collider, powered CP-violation measurements at the B factories at KEK and SLAC, and enabled the observation of single top-quark production at Fermilab's Tevatron collider. They were also key for the discovery and study of the Higgs boson as well as the observation of the ultra rare two-muon decay of the Bs meson at the LHC.
But it wasn't until the 2010s that modern computational power and methodological innovation enabled deep learning, and let AI-based research methods like ML really shine. In many ways, the relationship between particle physics and ML is a natural and symbiotic one. High energy particle collisions offer a means to study fundamental interactions under conditions similar to the early universe, allowing a window into potential particles or processes that are frozen out in the current universe. In this way, finding optimal and intelligent ways to sift through the trove of data from experiments at CERNs Large Hadron Collider (LHC) is crucial, as it enables researchers to precisely characterise the Standard Model (SM) and understand mysteries like dark matter and matter-antimatter asymmetry that motivate new physics beyond the Standard Model (BSM).
Collider-based experiments led to some of the original big data problems. Experiments like ATLAS at the LHC operate with staggering data rates, producing over 60 terabytes per second, yet only some of these proton collision events may contain processes of interest. What's more, these experiments offer a dataset that is unique in its complexity and statistical power, in which new ML architectures or problems such as systematic biases or hardware optimization can be studied.
The task of operating the ATLAS experiment and extracting results from its vast datasets is a computational labyrinth. From its inception in the 1990s, the ATLAS experiment was designed to process every proton collision digitally. Within seconds of a collision the data from millions of sensors have been filtered through a web of custom electronics and analysed on a computing farm with tens of thousands of CPUs. Collisions of interest are recorded and reanalysed countless times by physicists looking to better understand the nature of the universe. In all cases the goal of this analysis is to discover precisely what happened at the interaction point, where two protons travelling at 99.999999% the speed of light collide in the accelerator, producing a plethora of new particles.
Unfortunately, the physics at the interaction point can be elusive. Many of the most interesting SM or BSM particles produced in the proton collision will decay in less than one trillionth of one trillionth of a second! Physicists can only pick up on hints of SM or BSM physics by looking for the decay products of the most interesting particles, which may themselves decay before reaching any sensors in ATLAS. From a single collision the ATLAS experiment may record thousands of individual particles, and to make matters worse, it typically has to deal with dozens of simultaneous collisions. To understand what happened at the interaction point, physicists must carefully reconstruct, identify and measure each of these particles. These are then used to reconstruct the entire collision event, which are scoured for processes of interest that may lead to a better understanding of known particles, or shed light on the existence of never-before-observed ones.
ML methods are designed to harness large amounts of data in order to infer new information, making them naturally suited to various data processing tasks in ATLAS, from the moment a particle hits the detector all the way to the final published results. The examples that follow give a representative idea of how extensively this technology has pervaded the experiment, but merely scratch the surface of the full picture and potential of ML in HEP.
During regular operation of the ATLAS experiment, the first challenge is what to do with the data that is created. With multiple subsystems, an LHC frequency of 40 million collisions per second and millions of individual channels of data to read out, the ATLAS experiment produces a data rate far greater than can possibly be written to disk. A complex trigger system implements algorithms that rapidly evaluate incoming data events to determine if they are interesting enough to keep, rejecting the overwhelming majority of events produced.
This task requires sophisticated inference that can be done very quickly, introducing the use of fast ML to accelerate ML algorithms traditionally run in software for use in hardware such as field-programmable gate arrays (FPGAs). This process allows for greater intelligence closer to the source of the data, leading to more accurate reconstruction and better trigger decisions. For example, the energy and timing of signals in the ATLAS electromagnetic calorimeter subsystem can now be estimated by convolutional and recurrent ML architectures in real time of LHC operation, outperforming existing signal filters (Figure 1). This capability of ML to perform fast and accurate regression of key physical quantities can also be used for more accurate calibrations of detector signals.
AI/ML also comes into play in the reconstruction algorithms that turn detector signals into physics objects. Well before ATLAS recorded its first data, physicists had developed hundreds of algorithms to reconstruct specific particle types based on the signatures they leave in the different ATLAS sub-detectors. Some particles, like b-hadrons, will decay before reaching any of the ATLAS sub-detectors, and are discerned by triangulating the trajectories of the decay products back to a displaced vertex that is separated from the proton collision point by just a few millimetres. ML has proved essential in identifying this distinctive signature. The latest tools to identify b-hadrons in the detector make use of cutting-edge architectures, such as transformers with attention mechanisms that carefully study simulated b-hadron decays and learn to reject vertices from regular light quark processes at the best rate achieved in ATLAS to date. Transformers have also been used to learn the complex signature of a particle decaying to two b-hadrons when the decay is collimated and the b-hadron tracks are overlapping.
Once the data have been recorded and the events are reconstructed, it's time to study the underlying physics mechanism that produced the event. ATLAS physics analyses are predicated on effective solutions to classic signal-to-noise problems. Many processes of interest are incredibly rare and can be challenging to distinguish among the billions of ordinary proton collisions. Here is where ML can shine: its broad ability to exploit subtle features within a complex and high-statistics dataset make it a primary workhorse for isolating interesting signal processes.
No particle has held more interest in the past decade than the Higgs boson, discovered in 2012 by the ATLAS and CMS experiments and met with great fanfare and excitement. Understanding and characterising the Higgs boson and the underlying mechanism of mass generation remains an essential goal of high-energy physics today, and ML is in use throughout Higgs-boson analyses. The 2018 observation of the Higgs boson in its most common, but trickiest, decay channel, Hbb, made use of a classic boosted decision tree (BDT) architecture to classify the Higgs-boson signal from the overwhelming background of multijet processes to make observation possible (Figure 2).
ML has also enabled unprecedented study of the top quark, the heaviest known particle and one with a particularly interesting connection to the Higgs boson. In 2023, researchers adapted a graph neural network to model collisions in a geometrical way using the particles produced during the collision and their relationship to one another in the detector space. Training this model to separate the rare four-top-quark-production process from SM backgrounds allowed ATLAS to make its first statistically confident observation of such events, along with a measurement of its production rate and constraints on key possible extensions of the SM.
While these examples of ML to isolate a specific signal demonstrate the depth of its effectiveness, another implementation of ML can reveal its breadth. A growing interest in the LHC community in anomaly detection has led to the proliferation of ML methods that can isolate unusual phenomena from a well-known background model. Such an approach lowers the need to rely on a specific signal model, making these search techniques very broad and sensitive to new physics that may have been missed by previous analysis approaches. In recent years, ATLAS published its first use cases of anomaly detection, implemented via ML algorithms without complete labelling information of training inputs, all in the context of searches for new heavy particles decaying to two-object final states (Figure 3). These analyses leveraged the power of data-driven ML training through a mix of conventional and novel architectures to perform model-independent searches for new particles with a variety of mass and decay hypotheses, providing an invaluable new approach for extracting the most from the ATLAS dataset.
Despite these successes, there's no such thing as a flawless solution. While ML can offer incredible benefits to ATLAS throughout all stages of the analysis chain, its usage has to be closely coupled with continuous monitoring. Models can inherit unintended biases in the course of training, leading it to make spurious or, even worse, incorrect inferences. The risk of such biases is so significant that it has spawned a broader subfield of AI alignment and safety, and must be carefully considered when applying ML tools to produce physics results.
Luckily there are many ways ATLAS physicists can tackle this challenge. One potential source of such bias emerges from the use of simulated collision events to develop ML tools. While physicists have invested decades into generating accurate and fast simulations, there are still some known ways in which their predictive capabilities can break down. Furthermore, the development of a tool using a particular selection of data with limited statistical power can often require the intentional decorrelation of the model's learned conclusions from certain sensitive properties that should not be considered. To address these issues, physicists make use of dedicated de-biasing or decorrelation techniques from the HEP-ML research community, such as moment decomposition or distance correlation. The limitations of statistical power in simulation samples used for training can also be mitigated through the use of fast simulation methods, which use ML to circumvent the costly full Monte Carlo simulation chain by making fast estimations of key collision and detector properties.
On top of it all, developing, training and running these advanced algorithms takes a staggering amount of power. To run and adequately cool the mainframes and supercomputers of the CERN Data Centre takes about 37 gigawatt-hours per year, about 3% of CERN's total annual electrical consumption when the LHC operates. While this computing covers all CERN operations, including many applications beyond AI/ML development, producing this quantity of electricity has a significant carbon footprint. The growing role of AI/ML, combined with the uptake of larger and larger models, means that associated power consumption will likely increase as well; for context, Open AIs ChatGPT uses half a gigawatt-hour daily! Greener approaches are being investigated to continue these operations at CERN in an increasingly climate-focused society. Through dedicated sustainability initiatives, CERN is working with experts across areas of research to find environmentally friendly data management solutions and greener ways to run collider experiments.
With this striking history of success, and expectations for computational power to continue its tremendous rise, the future of ML in high-energy physics is bright. ATLAS researchers are collaborative by nature, and much of the work described here wouldn't be possible without close ties to the computer science and AI/ML research communities. Maintaining and expanding these relationships means that physics experimentation will continue to benefit from the latest and greatest in ML algorithms and software capabilities. A recent push across CERN to provide more "open data" recorded by the experiments will further engage researchers outside of HEP who can benefit from the uniquely complex and high-statistics LHC datasets to design and optimise their tools.
Beyond the horizons of ATLAS, AI/ML techniques are similarly impacting the broader landscape in physics. Within theoretical physics, ML offers the promise of dramatically reducing computation cost/time of challenging calculations and simulations, among other things. Further, ML is being studied to perform comprehensive optimizations of future detector designs, which comes at an exciting time for the strategic planning of next-generation colliders.
The long-term future of AI will have an impact on our world that is exciting, transformative and yet unimaginable and things are no different for particle physics. Through continued collaboration and thoughtful planning for the potential ethical and environmental consequences, researchers can properly harness AI/ML to usher in a new era of precision understanding (and potentially groundbreaking discoveries) in particle physics.
The author would like to thank Katarina Anthony, Dan Guest, Andreas Hoecker, Walter Hopkins, Michael Kagan, Zach Marshall, Benjamin Nachman, and Manuella Vincter for their input and feedback.
Julia Gonski is a Panofsky Fellow (associate staff scientist) working on the energy frontier at SLAC National Accelerator Laboratory. Her research focuses on novel approaches to searching for beyond the Standard Model physics with the ATLAS experiment, particularly incorporating machine learning (ML) and anomaly detection. She also works on fast ML for electronics in advanced trigger and readout systems, and planning for next-generation global collider facilities.
Link:
- The Top Five AWS Re:Invent 2019 Announcements That Impact Your Enterprise Today - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The Bot Decade: How AI Took Over Our Lives in the 2010s - Popular Mechanics [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Cloudy with a chance of neurons: The tools that make neural networks work - Ars Technica [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- NFL Looks to Cloud and Machine Learning to Improve Player Safety - Which-50 [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Managing Big Data in Real-Time with AI and Machine Learning - Database Trends and Applications [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- This AI Agent Uses Reinforcement Learning To Self-Drive In A Video Game - Analytics India Magazine [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Machine learning to grow innovation as smart personal device market peaks - IT Brief New Zealand [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- The impact of ML and AI in security testing - JAXenter [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Will Artificial Intelligence Be Humankinds Messiah or Overlord, Is It Truly Needed in Our Civilization - Science Times [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Get ready for the emergence of AI-as-a-Service - The Next Web [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Clean data, AI advances, and provider/payer collaboration will be key in 2020 - Healthcare IT News [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio pulls in $24m from investors, shows off storage-integrated parallelised, real-time AI/machine learning workflows - Blocks and Files [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- New York Institute of Finance and Google Cloud launch a Machine Learning for Trading Specialisation on Coursera - HedgeWeek [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Short- and long-term impacts of machine learning on contact centres - Which-50 [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Regulators Begin to Accept Machine Learning to Improve AML, But There Are Major Issues - PaymentsJournal [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Global Deep Learning Market 2020-2024 | Growing Application of Deep Learning to Boost Market Growth | Technavio - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- The Human-Powered Companies That Make AI Work - Forbes [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- UB receives $800,000 NSF/Amazon grant to improve AI fairness in foster care - UB Now: News and views for UB faculty and staff - University at Buffalo... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- New Project at Jefferson Lab Aims to Use Machine Learning to Improve Up-Time of Particle Accelerators - HPCwire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Speechmatics and Soho2 apply machine learning to analyse voice data - Finextra [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- What is Machine Learning? A definition - Expert System [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- How to Train Your AI Soldier Robots (and the Humans Who Command Them) - War on the Rocks [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Google Teaches AI To Play The Game Of Chip Design - The Next Platform [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Would you tell your innermost secrets to Alexa? How AI therapists could save you time and money on mental health care - MarketWatch [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Cisco Enhances IoT Platform with 5G Readiness and Machine Learning - The Fast Mode [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Buzzwords ahoy as Microsoft tears the wraps off machine-learning enhancements, new application for Dynamics 365 - The Register [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Inspur Re-Elected as Member of SPEC OSSC and Chair of SPEC Machine Learning - HPCwire [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- How to Pick a Winning March Madness Bracket - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Syniverse and RealNetworks Collaboration Brings Kontxt-Based Machine Learning Analytics to Block Spam and Phishing Text Messages - MarTech Series [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Grok combines Machine Learning and the Human Brain to build smarter AIOps - Diginomica [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Machine Learning: Real-life applications and it's significance in Data Science - Techstory [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Why 2020 will be the Year of Automated Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- What is machine learning? Everything you need to know | ZDNet [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- AI Is Top Game-Changing Technology In Healthcare Industry - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- Removing the robot factor from AI - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- This AI Researcher Thinks We Have It All Wrong - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- TMR Projects Strong Growth for Property Management Software Market, AI and Machine Learning to Boost Valuation to ~US$ 2 Bn by 2027 - PRNewswire [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Global Machine Learning as a Service Market, Trends, Analysis, Opportunities, Share and Forecast 2019-2027 - NJ MMA News [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Forget Chessthe Real Challenge Is Teaching AI to Play D&D - WIRED [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Workday, Machine Learning, and the Future of Enterprise Applications - Cloud Wars [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- The Global Deep Learning Chipset Market size is expected to reach $24.5 billion by 2025, rising at a market growth of 37% CAGR during the forecast... [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- The Power of AI in 'Next Best Actions' - CMSWire [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Proof in the power of data - PES Media [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- FYI: You can trick image-recog AI into, say, mixing up cats and dogs by abusing scaling code to poison training data - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Keeping Machine Learning Algorithms Humble and Honest in the Ethics-First Era - Datamation [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Emerging Trend of Machine Learning in Retail Market 2019 by Company, Regions, Type and Application, Forecast to 2024 - Bandera County Courier [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Are machine-learning-based automation tools good enough for storage management and other areas of IT? Let us know - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Why AI might be the most effective weapon we have to fight COVID-19 - The Next Web [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- AI Is Changing Work and Leaders Need to Adapt - Harvard Business Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning to Be Key Driver for Expansion and Adoption of AI in Asia-Pacific, Says GlobalData - MarTech Series [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- With Launch of COVID-19 Data Hub, The White House Issues A 'Call To Action' For AI Researchers - Machine Learning Times - machine learning & data... [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What are the top AI platforms? - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Data to the Rescue! Predicting and Preventing Accidents at Sea - JAXenter [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning: What You Need To Know - Forbes [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Neural networks facilitate optimization in the search for new materials - MIT News [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- PSD2: How machine learning reduces friction and satisfies SCA - The Paypers [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Google is using AI to design chips that will accelerate AI - MIT Technology Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What Researches says on Machine learning with COVID-19 - Techiexpert.com - TechiExpert.com [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Self-driving truck boss: 'Supervised machine learning doesnt live up to the hype. It isnt C-3PO, its sophisticated pattern matching' - The Register [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]