Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance … – Nature.com
Posted: June 11, 2024 at 2:48 am
Data description
In this study, 35,444 HCC patients were screened from the SEER database between 2010 and 2015, with 2197 patients meeting the criteria for inclusion. Table 1 shows the patients main baseline clinical characteristics (eTable 1 in the Supplement). Among the 2197 participants, 70% (n=1548) were aged 66years and below, 23% (n=505) were between 66 and 77years old, and 6.6% (n=144) were over 77years old. Male participants accounted for 78% (n=1915), while females represented 22% (n=550). In terms of race, the majority of participants were White, accounting for 66% (n=1455), followed by Asians or Pacific Islanders at 22% (n=478), Black individuals at 10% (n=228), and Native Americans/Alaskan Natives at only 1.6% (n=36). Regarding marital status, 60% (n=1319) were married, and the remaining 40% (n=878) were of other marital statuses. Histologically, most participants (98%, n=2154) were of type 8170. Additionally, 50% (n=1104) of the patients were grade II differentiated, 18% (n=402) were grade III, 1.0% (n=22) were grade IV, and 30% (n=669) were grade I. In terms of tumor staging, 48% (n=1054) of participants were at stage I, 29% (n=642) at stage II, 16% (n=344) at stage III, and 7.1% (n=157) at stage IV. Regarding the TNM classification, 49% (n=1079) were T1, 31% (n 1=677) were T2, 96% (n=2114) were N0, and 95% (n=2090) were M0. 66% (n=1444) of the participants had a positive/elevated AFP. 70% (n=1532) showed high levels of liver fibrosis. 92% (n=2012) had a single tumor, while the remaining 8.4% (n=185) had multiple tumors. 32% (n=704) underwent lobectomy, 14% (n=311) underwent local tumor destruction, 34% (n=753) had no surgery, and 20% (n=429) underwent wedge or segmental resection. Finally, 2.1% (n=46) received radiation therapy, with 62% (n=1352) not receiving chemotherapy and 38% (n=855) undergoing chemotherapy. The average overall survival (OS) in months for participants was 4534months, with 1327 (60%) surviving at the end of follow-up.
Following univariate Cox regression analysis, we identified several factors significantly correlated with the survival rate of hepatocellular carcinoma patients (p<0.05). These factors included age, race, marital status, histological type, tumor grade, tumor stage, T stage, N stage, M stage, alpha-fetoprotein levels, tumor size, type of surgery, and chemotherapy status. These variables all significantly impacted patient survival in the univariate analysis. However, in the multivariate Cox regression analysis, we further confirmed that only age, marital status, histological type, tumor grade, tumor stage, and tumor size were independent factors affecting patient survival (p<0.05) (Table 1). Additionally, through collinearity analysis, we observed a significant high degree of collinearity between tumor staging (Stage) and the individual stages of T, N, and M (Fig.1). This phenomenon occurs primarily because the overall tumor stage (Stage) is directly determined based on the results of the TNM assessment. This collinearity suggests the need for cautious handling of these variables during modeling to avoid overfitting and reduced predictive performance. Despite certain variables not being identified as independent predictors in multivariable analysis, we incorporated them into the construction of our deep learning model for several compelling reasons. Firstly, these variables may capture subtle interactions and nonlinear relationships that are not readily apparent in traditional regression models, but can be discerned through more sophisticated modeling techniques such as deep learning. Secondly, including a broader set of variables may enhance the generalizability and robustness of the model across diverse clinical scenarios, allowing it to better account for variations among patient subgroups or treatment conditions. Based on this analysis, we ultimately selected 12 key factors (age, race, marital status, histological type, tumor grade, T stage, N stage, M stage, alpha-fetoprotein, tumor size, type of surgery, chemotherapy) for inclusion in the construction of the predictive model. We divided the dataset into two subsets: a training set containing 1537 samples and a test set containing 660 samples (Table 2). By training and testing the model on these data, we aim to develop a model that can accurately predict the survival rate of hepatocellular carcinoma patients, assisting in clinical decision-making and improving patient prognosis.
Correlation coeffcients for each pair of variables in the data set.
Initially, we conducted fivefold cross-validation on the training set and performed 1000 iterations of random search. Among all these validations, we selected parameters that showed the highest average concordance index (C-index) and identified them as the optimal parameters. Figure2 displays the loss function graphs for the two deep learning models, NMTLR and DeepSurv. This set of graphs reveals the loss changes of these two models during the training process.
Loss convergence graph for (A) DeepSurv, (B) neural network multitask logistic regression (N-MTLR) models.
When comparing the machine learning models with the standard Cox Proportional Hazards (CoxPH) model in terms of predictive performance, Table 3 presents the performance of each model on the test set. In our analysis, we employed the log-rank test to compare the concordance indices (C-index) across models. The results indicated that the three machine learning modelsDeepSurv, N-MTLR, and RSFdemonstrated significantly superior discriminative ability compared to the standard Cox Proportional Hazards (CoxPH) model (p<0.01), as detailed in Table 4. Specifically, the C-index for DeepSurv was 0.7317, for NMTLR was 0.7353, and for RSF was 0.7336, compared to only 0.6837 for the standard CoxPH model. Among these three machine learning models, NMTLR had the highest C-index, demonstrating its superiority in predictive performance. Further analysis of the Integrated Brier Score (IBS) for each model revealed that the IBS for the four models were 0.1598 (NMTLR), 0.1632 (DeepSurv), 0.1648 (RSF), and 0.1789 (CoxPH), respectively (Fig.3). The NMTLR model had the lowest IBS value, indicating its best performance in terms of uncertainty in the predictions. Additionally, there was no significant difference between the C-indices obtained from the training and test sets, suggesting that the NMTLR model has better generalization performance in the face of real-world complex data and can effectively avoid the phenomenon of overfitting.
Through calibration plots (Fig.4), we observed that the NMTLR model demonstrated the best consistency between model predictions and actual observations in terms of 1-year, 3-year, and 5-year overall survival rates, followed by the DeepSurv model, RSF model, and CoxPH model. This consistency was also reflected in the AUC values: for the prediction of 1-year, 3-year, and 5-year survival rates, the NMTLR and DeepSurv models had higher AUC values than the RSF and CoxPH models. Specifically, the 1-year AUC values were 0.803 for NMTLR and 0.794 for DeepSurv, compared to 0.786 for RSF and 0.766 for CoxPH; the 3-year AUC values were 0.808 for NMTLR and 0.809 for DeepSurv, compared to 0.797 for RSF and 0.772 for CoxPH; the 5-year AUC values were 0.819 for both DeepSurv and NMTLR, compared to 0.812 for RSF and 0.772 for CoxPH. The results indicate that, in predicting the survival prognosis of patients with hepatocellular carcinoma, the deep learning modelsDeepSurv and NMTLRdemonstrate higher accuracy than the RSF and the classical CoxPH models. The NMTLR model significantly exhibited the best performance in multiple evaluation metrics.
The receiver operating curves (ROC) and calibration curves for 1-, 3-, 5-year survival predictions. ROC curves for (A) 1-, (C) 3-, (E) 5-year survival predictions. Calibration curves for (B) 1-, (D) 3-, (F) 5-year survival predictions.
In the feature analysis of deep learning models, the impact of a feature on model accuracy when its values are replaced with random data can be measured by the percentage decrease in the concordance index (C-index). A higher decrease percentage indicates the feature's significant importance in maintaining the model's predictive accuracy. Figure5 shows the feature importance heatmaps for the DeepSurv, NMTLR, and RSF models.
Heatmap of feature importance for DeepSurv, neural network multitask logistic regression (NMTLR) and random survival forest (RSF) models.
In the NMTLR model, the replacement of features such as age, race, marital status, histological type, tumor grade, T stage, N stage, alpha-fetoprotein, tumor size, type of surgery, and chemotherapy led to an average decrease in the concordance index by more than 0.1%. In the DeepSurv model, features like age, race, marital status, histological type, T stage, N stage, alpha-fetoprotein, tumor size, and type of surgery saw a similar average decrease in the concordance index when replaced with random data. In the RSF model, we found that features including age, race, tumor grade, T stage, M stage, tumor size, and type of surgery significantly impacted the model's accuracy, as evidenced by a noticeable decrease in the C-index, averaging a reduction of over 0.1% when replaced with random data.
In the training cohort, the NMTLR model was employed to predict patient risk probabilities. Optimal threshold values for these probabilities were determined using X-tile software. Patients were stratified into low-risk (<178.8), medium-risk (178.8248.4), and high-risk (>248.4) categories based on these cutoff points. Statistically significant differences were observed in the survival curves among the groups, with a p-value of less than 0.001, as depicted in Fig.6A. Similar results were replicated in the external validation cohort, as shown in Fig.6B, underscoring the robust risk stratification capability of the NMTLR model.
KaplanMeier curves evaluated the risk stratification ability of NMTLR model.
The web application developed in this study, primarily intended for research or informational purposes, is publicly accessible at http://120.55.167.119:8501/. The functionality and output visualization of this application are illustrated in Fig.7 and eFigure 1 in the Supplement.
The online web-based application of NMTLR model.
Visit link:
- The Top Five AWS Re:Invent 2019 Announcements That Impact Your Enterprise Today - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The Bot Decade: How AI Took Over Our Lives in the 2010s - Popular Mechanics [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Cloudy with a chance of neurons: The tools that make neural networks work - Ars Technica [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- NFL Looks to Cloud and Machine Learning to Improve Player Safety - Which-50 [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Managing Big Data in Real-Time with AI and Machine Learning - Database Trends and Applications [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- This AI Agent Uses Reinforcement Learning To Self-Drive In A Video Game - Analytics India Magazine [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Machine learning to grow innovation as smart personal device market peaks - IT Brief New Zealand [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- The impact of ML and AI in security testing - JAXenter [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Will Artificial Intelligence Be Humankinds Messiah or Overlord, Is It Truly Needed in Our Civilization - Science Times [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Get ready for the emergence of AI-as-a-Service - The Next Web [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Clean data, AI advances, and provider/payer collaboration will be key in 2020 - Healthcare IT News [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio pulls in $24m from investors, shows off storage-integrated parallelised, real-time AI/machine learning workflows - Blocks and Files [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- New York Institute of Finance and Google Cloud launch a Machine Learning for Trading Specialisation on Coursera - HedgeWeek [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Short- and long-term impacts of machine learning on contact centres - Which-50 [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Regulators Begin to Accept Machine Learning to Improve AML, But There Are Major Issues - PaymentsJournal [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Global Deep Learning Market 2020-2024 | Growing Application of Deep Learning to Boost Market Growth | Technavio - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- The Human-Powered Companies That Make AI Work - Forbes [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- UB receives $800,000 NSF/Amazon grant to improve AI fairness in foster care - UB Now: News and views for UB faculty and staff - University at Buffalo... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- New Project at Jefferson Lab Aims to Use Machine Learning to Improve Up-Time of Particle Accelerators - HPCwire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Speechmatics and Soho2 apply machine learning to analyse voice data - Finextra [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- What is Machine Learning? A definition - Expert System [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- How to Train Your AI Soldier Robots (and the Humans Who Command Them) - War on the Rocks [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Google Teaches AI To Play The Game Of Chip Design - The Next Platform [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Would you tell your innermost secrets to Alexa? How AI therapists could save you time and money on mental health care - MarketWatch [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Cisco Enhances IoT Platform with 5G Readiness and Machine Learning - The Fast Mode [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Buzzwords ahoy as Microsoft tears the wraps off machine-learning enhancements, new application for Dynamics 365 - The Register [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Inspur Re-Elected as Member of SPEC OSSC and Chair of SPEC Machine Learning - HPCwire [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- How to Pick a Winning March Madness Bracket - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Syniverse and RealNetworks Collaboration Brings Kontxt-Based Machine Learning Analytics to Block Spam and Phishing Text Messages - MarTech Series [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Grok combines Machine Learning and the Human Brain to build smarter AIOps - Diginomica [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Machine Learning: Real-life applications and it's significance in Data Science - Techstory [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Why 2020 will be the Year of Automated Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- What is machine learning? Everything you need to know | ZDNet [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- AI Is Top Game-Changing Technology In Healthcare Industry - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- Removing the robot factor from AI - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- This AI Researcher Thinks We Have It All Wrong - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- TMR Projects Strong Growth for Property Management Software Market, AI and Machine Learning to Boost Valuation to ~US$ 2 Bn by 2027 - PRNewswire [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Global Machine Learning as a Service Market, Trends, Analysis, Opportunities, Share and Forecast 2019-2027 - NJ MMA News [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Forget Chessthe Real Challenge Is Teaching AI to Play D&D - WIRED [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Workday, Machine Learning, and the Future of Enterprise Applications - Cloud Wars [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- The Global Deep Learning Chipset Market size is expected to reach $24.5 billion by 2025, rising at a market growth of 37% CAGR during the forecast... [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- The Power of AI in 'Next Best Actions' - CMSWire [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Proof in the power of data - PES Media [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- FYI: You can trick image-recog AI into, say, mixing up cats and dogs by abusing scaling code to poison training data - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Keeping Machine Learning Algorithms Humble and Honest in the Ethics-First Era - Datamation [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Emerging Trend of Machine Learning in Retail Market 2019 by Company, Regions, Type and Application, Forecast to 2024 - Bandera County Courier [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Are machine-learning-based automation tools good enough for storage management and other areas of IT? Let us know - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Why AI might be the most effective weapon we have to fight COVID-19 - The Next Web [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- AI Is Changing Work and Leaders Need to Adapt - Harvard Business Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning to Be Key Driver for Expansion and Adoption of AI in Asia-Pacific, Says GlobalData - MarTech Series [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- With Launch of COVID-19 Data Hub, The White House Issues A 'Call To Action' For AI Researchers - Machine Learning Times - machine learning & data... [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What are the top AI platforms? - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Data to the Rescue! Predicting and Preventing Accidents at Sea - JAXenter [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning: What You Need To Know - Forbes [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Neural networks facilitate optimization in the search for new materials - MIT News [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- PSD2: How machine learning reduces friction and satisfies SCA - The Paypers [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Google is using AI to design chips that will accelerate AI - MIT Technology Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What Researches says on Machine learning with COVID-19 - Techiexpert.com - TechiExpert.com [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Self-driving truck boss: 'Supervised machine learning doesnt live up to the hype. It isnt C-3PO, its sophisticated pattern matching' - The Register [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]