AI in the hands of imperfect users | npj Digital Medicine – Nature.com

Posted: December 29, 2022 at 12:20 am


without comments

Obermeyer, Z. & Emanuel, E. J. Predicting the futurebig data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216 (2016).

Article Google Scholar

Klugman, C. M. & Gerke, S. Rise of the bioethics AI: curse or blessing? Am. J. Bioeth. 22, 3537 (2022).

Article Google Scholar

U.S. Food and Drug Administration. Artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD) action plan. (2021).

Commission E. Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. European Commission (Brussels, 21.4.2021).

Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 38999. (2019).

Article Google Scholar

Chen T, Guestrin C. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.

Markus, A. F., Kors, J. A. & Rijnbeek, P. R. The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 113, 103655 (2021).

Article Google Scholar

Babic, B., Gerke, S., Evgeniou, T. & Cohen, I. G. Beware explanations from AI in health care. Science 373, 284286 (2021).

Article Google Scholar

U.S. Food and Drug Administration. Clinical Decision Support SoftwareGuidance for Industry and Food and Drug Administration Staff. (2022).

U.S. Food and Drug Administration. U.S. Federal Food, Drug, and Cosmetic Act. (2018).

Gerke, S. Health AI for good rather than evil? the need for a new regulatory framework for AI-based medical devices. Yale J. Health Policy, Law, Ethics 20, 433 (2021).

Google Scholar

Gerke, S., Babic, B., Evgeniou, T. & Cohen, I. G. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digit. Med. 3, 14 (2020).

Article Google Scholar

Nielsen, J. & Molich, R. Heuristic evaluation of user interfaces. Proc. SIGCHI Conf. Hum. factors Comput. Syst. 1990, 249256 (1990).

Google Scholar

Wu, E. et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat. Med. 27, 582584 (2021).

Article Google Scholar

Price W.N. II. Medical AI and contextual bias. Harvard Journal of Law and Technology 33, 2019.

Babic, B., Gerke, S., Evgeniou, T. & Cohen, I. G. Algorithms on regulatory lockdown in medicine. Science 366, 12021204 (2019).

Article Google Scholar

Ansell, D. A. & McDonald, E. K. Bias, black lives, and academic medicine. N. Engl. J. Med. 372, 10871089 (2015).

Article Google Scholar

Kostick-Quenet, K. M. et al. Mitigating racial bias in machine learning. J. Law Med. Ethics 50, 92100 (2022).

Article Google Scholar

Blumenthal-Barby, J. S. Good ethics and bad choices: the relevance of behavioral economics for medical ethics. (MIT Press, 2021).

Kahneman D., Slovic S. P., Slovic P. & Tversky A. Judgment under uncertainty: heuristics and biases. (Cambridge university press, 1982).

Pillutla, M. M., Malhotra, D. & Murnighan, J. K. Attributions of trust and the calculus of reciprocity. J. Exp. Soc. Psychol. 39, 448455 (2003).

Article Google Scholar

Corriveau, K. H. et al. Young childrens trust in their mothers claims: longitudinal links with attachment security in infancy. Child Dev. 80, 750761 (2009).

Article Google Scholar

Fett, A.-K. et al. Learning to trust: trust and attachment in early psychosis. Psychol. Med. 46, 14371447 (2016).

Article Google Scholar

Butler, J. K. Jr. & Cantrell, R. S. A behavioral decision theory approach to modeling dyadic trust in superiors and subordinates. Psychol. Rep. 55, 1928 (1984).

Article Google Scholar

Mayer, R. C., Davis, J. H. & Schoorman, F. D. An integrative model of organizational trust. Acad. Manag. Rev. 20, 709734 (1995).

Article Google Scholar

Grover, S. L., Hasel, M. C., Manville, C. & Serrano-Archimi, C. Follower reactions to leader trust violations: A grounded theory of violation types, likelihood of recovery, and recovery process. Eur. Manag. J. 32, 689702 (2014).

Article Google Scholar

Banaji M. R. & Gelman S. A. Navigating the social world: what infants, children, and other species can teach us. (Oxford University Press; 2013).

Fawcett, C. Kids attend to saliva sharing to infer social relationships. Science 375, 260261 (2022).

Article Google Scholar

Kaufmann, L. & Clment, F. Wired for society: cognizing pathways to society and culture. Topoi 33, 45975. (2014).

Article Google Scholar

Vickery, J. et al. Challenges to evidence-informed decision-making in the context of pandemics: qualitative study of COVID-19 policy advisor perspectives. BMJ Glob. Health 7, e008268 (2022).

Article Google Scholar

Muoz, K. A. et al. Pressing ethical issues in considering pediatric deep brain stimulation for obsessive-compulsive disorder. Brain Stimul. 14, 156672. (2021).

Article Google Scholar

Hampson, G., Towse, A., Pearson, S. D., Dreitlein, W. B. & Henshall, C. Gene therapy: evidence, value and affordability in the US health care system. J. Comp. Eff. Res. 7, 1528 (2018).

Article Google Scholar

Wang, Z. J. & Busemeyer, J. R. Cognitive choice modeling. (MIT Press, 2021).

Menon, T. & Blount, S. The messenger bias: a relational model of knowledge valuation. Res. Organ. Behav. 25, 137186 (2003).

Google Scholar

Howard, J. Bandwagon effect and authority bias. Cognitive Errors and Diagnostic Mistakes. 2156 (Springer; 2019).

Slovic, P. The construction of preference. Am. Psychol. 50, 364 (1995).

Article Google Scholar

Levine, L. J., Lench, H. C., Karnaze, M. M. & Carlson, S. J. Bias in predicted and remembered emotion. Curr. Opin. Behav. Sci. 19, 7377 (2018).

Article Google Scholar

Christman, J. The politics of persons: Individual autonomy and socio-historical selves. (Cambridge University Press, 2009).

Samuelson, W. & Zeckhauser, R. Status quo bias in decision making. J. Risk Uncertain. 1, 759 (1988).

Article Google Scholar

Hardisty, D. J., Appelt, K. C. & Weber, E. U. Good or bad, we want it now: fixedcost present bias for gains and losses explains magnitude asymmetries in intertemporal choice. J. Behav. Decis. Mak. 26, 348361 (2013).

Article Google Scholar

Alon-Barkat, S. & Busuioc, M. Decision-makers processing of ai algorithmic advice: automation bias versus selective adherence. https://arxiv.org/ftp/arxiv/papers/2103/2103.02381.pdf (2021).

Bond, R. R. et al. Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms. J. Electrocardiol. 51, S6S11 (2018).

Article Google Scholar

Cummings, M. L. Automation bias in intelligent time critical decision support systems. Decision Making in Aviation. 289294 (Routledge, 2017).

Jussupow, E., Spohrer, K., Heinzl, A. & Gawlitza, J. Augmenting medical diagnosis decisions? An investigation into physicians decision-making process with artificial intelligence. Inf. Syst. Res. 32, 713735 (2021).

Article Google Scholar

Skitka, L. J., Mosier, K. L. & Burdick, M. Does automation bias decision-making? Int. J. Hum. Comput. Stud. 51, 9911006 (1999).

Article Google Scholar

Dijkstra, J. J., Liebrand, W. B. & Timminga, E. Persuasiveness of expert systems. Behav. Inf. Technol. 17, 155163 (1998).

Article Google Scholar

Logg, J. M., Minson, J. A. & Moore, D. A. Algorithm appreciation: people prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 151, 90103 (2019).

Article Google Scholar

Furnham, A. & Boo, H. C. A literature review of the anchoring effect. J. Socio-Econ. 40, 3542 (2011).

Article Google Scholar

Diab, D. L., Pui, S. Y., Yankelevich, M. & Highhouse, S. Lay perceptions of selection decision aids in US and nonUS samples. Int. J. Sel. Assess. 19, 209216 (2011).

Article Google Scholar

Dietvorst, B. J., Simmons, J. P. & Massey, C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 144, 114 (2015).

Article Google Scholar

Promberger, M. & Baron, J. Do patients trust computers? J. Behav. Decis. Mak. 19, 455468 (2006).

Article Google Scholar

Gaube, S. et al. Do as AI say: susceptibility in deployment of clinical decision-aids. NPJ Digit. Med. 4, 18 (2021).

Article Google Scholar

Mosier, K. L, Skitka, L.J., Burdick, M. D. & Heers, S.T. Automation bias, accountability, and verification behaviors. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. pp. 204208 (SAGE Publications Sage CA, Los Angeles, CA, 1996).

Wickens, C. D., Clegg, B. A., Vieane, A. Z. & Sebok, A. L. Complacency and automation bias in the use of imperfect automation. Hum. Factors 57, 728739 (2015).

Article Google Scholar

Li, D., Kulasegaram, K. & Hodges, B. D. Why we neednt fear the machines: opportunities for medicine in a machine learning world. Acad. Med. 94, 623625 (2019).

Article Google Scholar

Paranjape, K., Schinkel, M., Panday, R. N., Car, J. & Nanayakkara, P. Introducing artificial intelligence training in medical education. JMIR Med. Educ. 5, e16048 (2019).

Article Google Scholar

Park, S. H., Do, K.-H., Kim, S., Park, J. H. & Lim, Y.-S. What should medical students know about artificial intelligence in medicine? J. Educ. Eval. Health Prof. 16, 18 (2019).

Article Google Scholar

Leavy, S., OSullivan, B. & Siapera, E. Data, power and bias in artificial intelligence. https://arxiv.org/abs/2008.07341 (2020).

Read the original here:

AI in the hands of imperfect users | npj Digital Medicine - Nature.com

Related Posts

Written by admin |

December 29th, 2022 at 12:20 am

Posted in Machine Learning




matomo tracker