A machine-learning method isolating changes in wrist kinematics that identify age-related changes in arm movement … – Nature.com

Posted: May 5, 2024 at 2:42 am


without comments

Carmeli, E., Patish, H. & Coleman, R. The aging hand. J. Gerontol. A Biol. Sci. Med. Sci. 58, M146M152 (2003).

Article Google Scholar

Markov, N. T. et al. Age-related brain atrophy is not a homogenous process: Different functional brain networks associate differentially with aging and blood factors. Proc. Natl. Acad. Sci. 119, e2207181119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Lenka, A. & Jankovic, J. Tremor syndromes: An updated review. Front. Neurol. 12, 684835 (2021).

Article PubMed PubMed Central Google Scholar

Tse, W. et al. Prevalence of movement disorders in an elderly nursing home population. Arch. Gerontol. Geriatr. 46, 359366 (2008).

Article PubMed Google Scholar

Hess, C. W. & Pullman, S. L. Tremor: Clinical phenomenology and assessment techniques. Tremor Other Hyperkinetic Mov. 2, 02 (2012).

Article Google Scholar

Zesiewicz, T. Overview of essential tremor. Neuropsychiatr. Disease Treat. 6, 401 (2010).

Article CAS Google Scholar

Veluvolu, K. C. & Ang, W. T. Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int. J. Med. Robot. Comput. Assist. Surg. 6, 334342 (2010).

Article CAS Google Scholar

Lewis, R. D. & Brown, J. M. Influence of muscle activation dynamics on reaction time in the elderly. Eur. J. Appl. Physiol. 69, 344349 (1994).

Article CAS Google Scholar

Inglin, B. & Woollacott, M. Age-related changes in anticipatory postural adjustments associated with arm movements. J. Gerontol. 43, M105M113 (1988).

Article CAS PubMed Google Scholar

Veluvolu, K. C. & Ang, W. T. Estimation of physiological tremor from accelerometers for real-time applications. Sensors 11, 30203036 (2011).

Article ADS PubMed PubMed Central Google Scholar

Anouti, A. & Koller, W. C. Tremor disorders. Diagnosis and management. Western J. Med. 162, 510 (1995).

CAS Google Scholar

Elias, W. J. & Shah, B. B. Tremor. JAMA 311, 948954. https://doi.org/10.1001/jama.2014.1397 (2014).

Article CAS PubMed Google Scholar

Marshall, J. The effect of ageing upon physiological tremor. J. Neurol. Neurosurg. Psychiatry 24, 1417 (1961).

Article CAS PubMed PubMed Central Google Scholar

Sturman, M. M., Vaillancourt, D. E. & Corcos, D. M. Effects of aging on the regularity of physiological tremor. J. Neurophysiol. 93, 30643074 (2005).

Article PubMed Google Scholar

Morrison, S., Newell, K. M. & Kavanagh, J. J. Differences in postural tremor dynamics with age and neurological disease. Exp. Brain Res. 235, 17191729 (2017).

Article PubMed Google Scholar

Baizabal-Carvallo, J. F. & Morgan, J. C. Drug-induced tremor, clinical features, diagnostic approach and management. J. Neurol. Sci. 435, 120192 (2022).

Article PubMed Google Scholar

Deuschl, G. et al. The clinical and electrophysiological investigation of tremor. Clin. Neurophysiol. 136, 93129 (2022).

Article PubMed Google Scholar

Wyne, K. T. A comprehensive review of tremor. J. Am. Acad. Phys. Assist. 18, 4350 (2005).

Google Scholar

De, A., Bhatia, K. P., Volkmann, J., Peach, R. & Schreglmann, S. R. Machine learning in tremor analysis: Critique and directions. Mov. Disord. 38, 717731. https://doi.org/10.1002/mds.29376 (2023).

Article PubMed Google Scholar

Evers, L. J., Krijthe, J. H., Meinders, M. J., Bloem, B. R. & Heskes, T. M. Measuring parkinsons disease over time: The real-world within-subject reliability of the mds-updrs. Mov. Disord. 34, 14801487 (2019).

Article PubMed PubMed Central Google Scholar

Winder, J. Y., Roos, R. A., Burgunder, J.-M., Marinus, J. & Reilmann, R. Interrater reliability of the unified Huntingtons disease rating scale-total motor score certification. Mov. Disord. Clin. Pract. 5, 290295 (2018).

Article PubMed PubMed Central Google Scholar

Randall, J. E. & Stiles, R. N. Power spectral analysis of finger acceleration tremor. J. Appl. Physiol. 19, 357360 (1964).

Article CAS PubMed Google Scholar

Mamorita, N., Iizuka, T., Takeuchi, A., Shirataka, M. & Ikeda, N. Development of a system for measurement and analysis of tremor using a three-axis accelerometer. Methods Inf. Med. 48, 589594 (2009).

Article CAS PubMed Google Scholar

Niazmand, K., Kalaras, A., Dai, H. & Lueth, T.C. Comparison of methods for tremor frequency analysis for patients with parkinsons disease, in 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), vol.2, 693697 (2011).

Li, J. et al. A wearable multi-segment upper limb tremor assessment system for differential diagnosis of Parkinsons disease versus essential tremor. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 33973406 (2023).

Article ADS PubMed Google Scholar

Gajewski, J., Mazur-Rzycka, J., Grski, M. & Busko, K. Reference values of the forearm tremor power spectra for youth athletes. J. Hum. Kinet. 86, 133143 (2023).

Article PubMed PubMed Central Google Scholar

Chan, P. Y. et al. Motion characteristics of subclinical tremors in Parkinsons disease and normal subjects. Sci. Rep. 12, 4021 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Luft, F. et al. A power spectral density-based method to detect tremor and tremor intermittency in movement disorders. Sensors 19, 4301 (2019).

Article ADS PubMed PubMed Central Google Scholar

Ali, S. M. et al. Wearable sensors during drawing tasks to measure the severity of essential tremor. Sci. Rep. 12, 5242 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Karamizadeh, S., Abdullah, S.M., Halimi, M., Shayan, J. & Rajabi, M.J. Advantage and drawback of support vector machine functionality, in 2014 International Conference on Computer, Communications, and Control Technology (I4CT) (2014).

Peng, H., Long, F. & Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 12261238 (2005).

Article PubMed Google Scholar

Bharathi, A. & Natarajan, A. M. Cancer classification using support vector machines and relevance vector machine based on analysis of variance features. J. Comput. Sci. 7, 13931399 (2011).

Article Google Scholar

Zhao, Z., Zhang, R., Cox, J., Duling, D. & Sarle, W. Massively parallel feature selection: An approach based on variance preservation. Mach. Learn. 92, 195220 (2013).

Article MathSciNet Google Scholar

AlFatih AbilFida, M., Ahmad, T. & Ntahobari, M. Variance threshold as early screening to boruta feature selection for intrusion detection system, in 2021 13th International Conference on Information & Communication Technology and System (ICTS), 4650 (2021).

SitiAmbarwati, Y. & Uyun, S. Feature selection on magelang duck egg candling image using variance threshold method, in 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 694699 (2020).

Wu, Q.Q., Wang, Y.D., Wang, Z.Y. & Liu, K.H. Unsupervised feature selection algorithm based on spectral clustering and analysis of variance, in Future Information Engineering and Manufacturing Science, 175178 (2015).

Cheng, W., Wang, T., Wen, W., Li, J. & Gao, R. X. Mathematical methods and modeling in machine fault diagnosis. Math. Probl. Eng. 2014, 18 (2014).

Article Google Scholar

Lv, C. et al. A classification feature optimization method for remote sensing imagery based on fisher score and MRMR. Appl. Sci. 12, 8845 (2022).

Article CAS Google Scholar

Sakar, C. O., Kursun, O. & Gurgen, F. A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method. Exp. Syst. Appl. 39, 34323437 (2012).

Article Google Scholar

Hua, Z. et al. A feature dimensionality reduction strategy coupled with an electronic nose to identify the quality of egg. J. Food Process. Eng. 44, e13873 (2021).

Article Google Scholar

Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A. & Quilter, R. E. Age differences and changes in reaction time: The baltimore longitudinal study of aging. J. Gerontol. 49, P179P189 (1994).

Article CAS PubMed Google Scholar

Nelson, R. J., McCandlish, C. A. & Douglas, V. D. Reaction times for hand movements made in response to visual versus vibratory cues. Somatos. Motor Res. 7, 337352 (1990).

Article CAS Google Scholar

Robinovitch, S. N., Normandin, S. C., Stotz, P. & Maurer, J. D. Time requirement for young and elderly women to move into a position for breaking a fall with outstretched hands. J. Gerontol. A Biol. Sci. Med. Sci. 60, 15531557 (2005).

Article PubMed Google Scholar

Kanekar, N. & Aruin, A. S. The effect of aging on anticipatory postural control. Exp. Brain Res. 232, 11271136 (2014).

Article PubMed PubMed Central Google Scholar

Bao, T. et al. Vibrotactile display design: Quantifying the importance of age and various factors on reaction times. PLOS ONE 14, e0219737 (2019).

Article CAS PubMed PubMed Central Google Scholar

Barela, J. A., Rocha, A. A., Novak, A. R., Fransen, J. & Figueiredo, G. A. Age differences in the use of implicit visual cues in a response time task. Braz. J. Motor Behav. 13, 8693 (2019).

Article Google Scholar

Ivosev, G., Burton, L. & Bonner, R. Dimensionality reduction and visualization in principal component analysis. Anal. Chem. 80, 49334944 (2008).

Article CAS PubMed Google Scholar

Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psychol. 39, 8190 (2017).

Article Google Scholar

Nizamis, K. et al. Characterization of forearm muscle activation in Duchenne muscular dystrophy via high-density electromyography: A case study on the implications for myoelectric control. Front. Neurol. 11, 231 (2020).

Article PubMed PubMed Central Google Scholar

Shelton, J. & Kumar, G. P. Comparison between auditory and visual simple reaction times. Neurosci. Med. 01, 3032 (2010).

Article Google Scholar

Rahimi, F., Bee, C., South, A., Debicki, D. & Jog, M. Variability of hand tremor in rest and in posture-a pilot study, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 470473 (IEEE, 2011).

Rahimi, F. et al. Dynamic decomposition of motion in essential and parkinsonian tremor. Can. J. Neurol. Sci. 42, 116124 (2015).

Article PubMed Google Scholar

Wang, J., Gupta, S.K. & Barry, O. Towards data-driven modeling of pathological tremors, in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 83914, V002T02A030 (American Society of Mechanical Engineers, 2020).

Fajardo, J. Jr. & Melo, L. F. D. Towards a modular pathological tremor simulation system based on the Stewart platform. Sensors 23, 9020 (2023).

See the rest here:

A machine-learning method isolating changes in wrist kinematics that identify age-related changes in arm movement ... - Nature.com

Related Posts

Written by admin |

May 5th, 2024 at 2:42 am

Posted in Machine Learning

Tagged with




matomo tracker