What we learned about AI and deep learning in 2022 – VentureBeat
Posted: December 29, 2022 at 12:20 am
Check out all the on-demand sessions from the Intelligent Security Summit here.
Its as good a time as any to discuss the implications of advances in artificial intelligence (AI). 2022 saw interesting progress in deep learning, especially in generative models. However, as the capabilities of deep learning models increase, so does the confusion surrounding them.
On the one hand, advanced models such as ChatGPT and DALL-E are displaying fascinating results and the impression of thinking and reasoning. On the other hand, they often make errors that prove they lack some of the basic elements of intelligence that humans have.
The science community is divided on what to make of these advances. At one end of the spectrum, some scientists have gone as far as saying that sophisticated models are sentient and should be attributed personhood. Others have suggested that current deep learning approaches will lead to artificial general intelligence (AGI). Meanwhile, some scientists have studied the failures of current models and are pointing out that although useful, even the most advanced deep learning systems suffer from the same kind of failures that earlier models had.
It was against this background that the online AGI Debate #3 was held on Friday, hosted by Montreal AI president Vincent Boucher and AI researcher Gary Marcus. The conference, which featured talks by scientists from different backgrounds, discussed lessons from cognitive science and neuroscience, the path to commonsense reasoning in AI, and suggestions for architectures that can help take the next step in AI.
Intelligent Security Summit On-Demand
Learn the critical role of AI & ML in cybersecurity and industry specific case studies. Watch on-demand sessions today.
Deep learning approaches can provide useful tools in many domains, said linguist and cognitive scientist Noam Chomsky. Some of these applications, such as automatic transcription and text autocomplete have become tools we rely on every day.
But beyond utility, what do we learn from these approaches about cognition, thinking, in particular language? Chomsky said. [Deep learning] systems make no distinction between possible and impossible languages. The more the systems are improved the deeper the failure becomes. They will do even better with impossible languages and other systems.
This flaw is evident in systems like ChatGPT, which can produce text that is grammatically correct and consistent but logically and factually flawed. Presenters at the conference provided numerous examples of such flaws, such as large language models not being able to sort sentences based on length, making grave errors on simple logical problems, and making false and inconsistent statements.
According to Chomsky, the current approaches for advancing deep learning systems, which rely on adding training data, creating larger models, and using clever programming, will only exacerbate the mistakes that these systems make.
In short, theyre telling us nothing about language and thought, about cognition generally, or about what it is to be human or any other flights of fantasy in contemporary discussion, Chomsky said.
Marcus said that a decade after the 2012 deep learning revolution, considerable progress has been made, but some issues remain.
He laid out four key aspects of cognition that are missing from deep learning systems:
Deep neural networks will continue to make mistakes in adversarial and edge cases, said Yejin Choi, computer science professor at the University of Washington.
The real problem were facing today is that we simply do not know the depth or breadth of these adversarial or edge cases, Choi said. My haunch is that this is going to be a real challenge that a lot of people might be underestimating. The true difference between human intelligence and current AI is still so vast.
Choi said that the gap between human and artificial intelligence is caused by lack of common sense, which she described as the dark matter of language and intelligence and the unspoken rules of how the world works that influence the way people use and interpret language.
According to Choi, common sense is trivial for humans and hard for machines because obvious things are never spoken, there are endless exceptions to every rule, and there is no universal truth in commonsense matters. Its ambiguous, messy stuff, she said.
AI researcher and neuroscientist, Dileep George, emphasized the importance of mental simulation for common sense reasoning via language. Knowledge for commonsense reasoning is acquired through sensory experience, George said, and this knowledge is stored in the perceptual and motor system. We use language to probe this model and trigger simulations in the mind.
You can think of our perceptual and conceptual system as the simulator, which is acquired through our sensorimotor experience. Language is something that controls the simulation, he said.
George also questioned some of the current ideas for creating world models for AI systems. In most of these blueprints for world models, perception is a preprocessor that creates a representation on which the world model is built.
That is unlikely to work because many details of perception need to be accessed on the fly for you to be able to run the simulation, he said. Perception has to be bidirectional and has to use feedback connections to access the simulations.
While many scientists agree on the shortcomings of current AI systems, they differ on the road forward.
David Ferrucci, founder of Elemental Cognition and a former member of IBM Watson, said that we cant fulfill our vision for AI if we cant get machines to explain why they are producing the output theyre producing.
Ferruccis company is working on an AI system that integrates different modules. Machine learning models generate hypotheses based on their observations and project them onto an explicit knowledge module that ranks them. The best hypotheses are then processed by an automated reasoning module. This architecture can explain its inferences and its causal model, two features that are missing in current AI systems. The system develops its knowledge and causal models from classic deep learning approaches and interactions with humans.
AI scientist Ben Goertzel stressed that the deep neural net systems that are currently dominating the current commercial AI landscape will not make much progress toward building real AGI systems.
Goertzel, who is best known for coining the term AGI, said that enhancing current models such as GPT-3 with fact-checkers will not fix the problems that deep learning faces and will not make them capable of generalization like the human mind.
Engineering true, open-ended intelligence with general intelligence is totally possible, and there are several routes to get there, Goertzel said.
He proposed three solutions, including doing a real brain simulation; making a complex self-organizing system that is quite different from the brain; or creating a hybrid cognitive architecture that self-organizes knowledge in a self-reprogramming, self-rewriting knowledge graph controlling an embodied agent. His current initiative, the OpenCog Hyperon project, is exploring the latter approach.
Francesca Rossi, IBM fellow and AI Ethics Global Leader at the Thomas J. Watson Research Center, proposed an AI architecture that takes inspiration from cognitive science and the Thinking Fast and Slow Framework of Daniel Kahneman.
The architecture, named SlOw and Fast AI (SOFAI), uses a multi-agent approach composed of fast and slow solvers. Fast solvers rely on machine learning to solve problems. Slow solvers are more symbolic and attentive and computationally complex. There is also a metacognitive module that acts as an arbiter and decides which agent will solve the problem.Like the human brain, if the fast solver cant address a novel situation, the metacognitive module passes it on to the slow solver. This loop then retrains the fast solver to gradually learn to address these situations.
This is an architecture that is supposed to work for both autonomous systems and for supporting human decisions, Rossi said.
Jrgen Schmidhuber, scientific director of The Swiss AI Lab IDSIA and one of the pioneers of modern deep learning techniques, said that many of the problems raised about current AI systems have been addressed in systems and architectures introduced in the past decades. Schmidhuber suggested that solving these problems is a matter of computational cost and that in the future, we will be able to create deep learning systems that can do meta-learning and find new and better learning algorithms.
Jeff Clune, associate professor of computer science at the University of British Columbia, presented the idea of AI-generating algorithms.
The idea is to learn as much as possible, to bootstrap from very simple beginnings all the way through to AGI, Clune said.
Such a system has an outer loop that searches through the space of possible AI agents and ultimately produces something that is very sample-efficient and very general. The evidence that this is possible is the very expensive and inefficient algorithm of Darwinian evolution that ultimately produced the human mind, Clune said.
Clune has been discussing AI-generating algorithms since 2019, which he believes rests on three key pillars: Meta-learning architectures, meta-learning algorithms, and effective means to generate environments and data. Basically, this is a system that can constantly create, evaluate and upgrade new learning environments and algorithms.
At the AGI debate, Clune added a fourth pillar, which he described as leveraging human data.
If you watch years and years of video on agents doing that task and pretrain on that, then you can go on to learn very very difficult tasks, Clune said. Thats a really big accelerant to these efforts to try to learn as much as possible.
Learning from human-generated data is what has allowed GPT, CLIP and DALL-E to find efficient ways to generate impressive results. AI sees further by standing on the shoulders of giant datasets, Clune said.
Clune finished by predicting a 30% chance of having AGI by 2030. He also said that current deep learning paradigms with some key enhancements will be enough to achieve AGI.
Clune warned, I dont think were ready as a scientific community and as a society for AGI arriving that soon, and we need to start planning for this as soon as possible. We need to start planning now.
VentureBeat's mission is to be a digital town square for technical decision-makers to gain knowledge about transformative enterprise technology and transact. Discover our Briefings.
See original here:
What we learned about AI and deep learning in 2022 - VentureBeat
- The Top Five AWS Re:Invent 2019 Announcements That Impact Your Enterprise Today - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The Bot Decade: How AI Took Over Our Lives in the 2010s - Popular Mechanics [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Cloudy with a chance of neurons: The tools that make neural networks work - Ars Technica [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- NFL Looks to Cloud and Machine Learning to Improve Player Safety - Which-50 [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Managing Big Data in Real-Time with AI and Machine Learning - Database Trends and Applications [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- This AI Agent Uses Reinforcement Learning To Self-Drive In A Video Game - Analytics India Magazine [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Machine learning to grow innovation as smart personal device market peaks - IT Brief New Zealand [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- The impact of ML and AI in security testing - JAXenter [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Will Artificial Intelligence Be Humankinds Messiah or Overlord, Is It Truly Needed in Our Civilization - Science Times [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Get ready for the emergence of AI-as-a-Service - The Next Web [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Clean data, AI advances, and provider/payer collaboration will be key in 2020 - Healthcare IT News [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio pulls in $24m from investors, shows off storage-integrated parallelised, real-time AI/machine learning workflows - Blocks and Files [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- New York Institute of Finance and Google Cloud launch a Machine Learning for Trading Specialisation on Coursera - HedgeWeek [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Short- and long-term impacts of machine learning on contact centres - Which-50 [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Regulators Begin to Accept Machine Learning to Improve AML, But There Are Major Issues - PaymentsJournal [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 27th, 2020] [Originally Added On: January 27th, 2020]
- Global Deep Learning Market 2020-2024 | Growing Application of Deep Learning to Boost Market Growth | Technavio - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- The Human-Powered Companies That Make AI Work - Forbes [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- UB receives $800,000 NSF/Amazon grant to improve AI fairness in foster care - UB Now: News and views for UB faculty and staff - University at Buffalo... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- New Project at Jefferson Lab Aims to Use Machine Learning to Improve Up-Time of Particle Accelerators - HPCwire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- Speechmatics and Soho2 apply machine learning to analyse voice data - Finextra [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- What is Machine Learning? A definition - Expert System [Last Updated On: February 4th, 2020] [Originally Added On: February 4th, 2020]
- How to Train Your AI Soldier Robots (and the Humans Who Command Them) - War on the Rocks [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Google Teaches AI To Play The Game Of Chip Design - The Next Platform [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Would you tell your innermost secrets to Alexa? How AI therapists could save you time and money on mental health care - MarketWatch [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Cisco Enhances IoT Platform with 5G Readiness and Machine Learning - The Fast Mode [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Buzzwords ahoy as Microsoft tears the wraps off machine-learning enhancements, new application for Dynamics 365 - The Register [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Inspur Re-Elected as Member of SPEC OSSC and Chair of SPEC Machine Learning - HPCwire [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- How to Pick a Winning March Madness Bracket - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Syniverse and RealNetworks Collaboration Brings Kontxt-Based Machine Learning Analytics to Block Spam and Phishing Text Messages - MarTech Series [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Grok combines Machine Learning and the Human Brain to build smarter AIOps - Diginomica [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Machine Learning: Real-life applications and it's significance in Data Science - Techstory [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- Why 2020 will be the Year of Automated Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- What is machine learning? Everything you need to know | ZDNet [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- AI Is Top Game-Changing Technology In Healthcare Industry - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- Removing the robot factor from AI - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- This AI Researcher Thinks We Have It All Wrong - Forbes [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- TMR Projects Strong Growth for Property Management Software Market, AI and Machine Learning to Boost Valuation to ~US$ 2 Bn by 2027 - PRNewswire [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Global Machine Learning as a Service Market, Trends, Analysis, Opportunities, Share and Forecast 2019-2027 - NJ MMA News [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Forget Chessthe Real Challenge Is Teaching AI to Play D&D - WIRED [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- Workday, Machine Learning, and the Future of Enterprise Applications - Cloud Wars [Last Updated On: February 29th, 2020] [Originally Added On: February 29th, 2020]
- The Global Deep Learning Chipset Market size is expected to reach $24.5 billion by 2025, rising at a market growth of 37% CAGR during the forecast... [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- The Power of AI in 'Next Best Actions' - CMSWire [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Proof in the power of data - PES Media [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- FYI: You can trick image-recog AI into, say, mixing up cats and dogs by abusing scaling code to poison training data - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Keeping Machine Learning Algorithms Humble and Honest in the Ethics-First Era - Datamation [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Emerging Trend of Machine Learning in Retail Market 2019 by Company, Regions, Type and Application, Forecast to 2024 - Bandera County Courier [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Are machine-learning-based automation tools good enough for storage management and other areas of IT? Let us know - The Register [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Why AI might be the most effective weapon we have to fight COVID-19 - The Next Web [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- AI Is Changing Work and Leaders Need to Adapt - Harvard Business Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning to Be Key Driver for Expansion and Adoption of AI in Asia-Pacific, Says GlobalData - MarTech Series [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- With Launch of COVID-19 Data Hub, The White House Issues A 'Call To Action' For AI Researchers - Machine Learning Times - machine learning & data... [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What are the top AI platforms? - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Data to the Rescue! Predicting and Preventing Accidents at Sea - JAXenter [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Deep Learning: What You Need To Know - Forbes [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Neural networks facilitate optimization in the search for new materials - MIT News [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- PSD2: How machine learning reduces friction and satisfies SCA - The Paypers [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Google is using AI to design chips that will accelerate AI - MIT Technology Review [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- What Researches says on Machine learning with COVID-19 - Techiexpert.com - TechiExpert.com [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]
- Self-driving truck boss: 'Supervised machine learning doesnt live up to the hype. It isnt C-3PO, its sophisticated pattern matching' - The Register [Last Updated On: March 29th, 2020] [Originally Added On: March 29th, 2020]