Archive for the ‘Quantum Computer’ Category
This Week in Tech: What on Earth Is a Quantum Computer? – The New York Times
Posted: December 11, 2019 at 4:45 am
David Bacon, senior software engineer in Googles quantum lab: Quantum computers do computations in parallel universes. This by itself isnt useful. U only get to exist in 1 universe at a time! The trick: quantum computers dont just split universes, they also merge universes. And this merge can add and subtract those other split universes.
David Reilly, principal researcher and director of the Microsoft quantum computing lab in Sydney, Australia: A quantum machine is a kind of analog calculator that computes by encoding information in the ephemeral waves that comprise light and matter at the nanoscale. Quantum entanglement likely the most counterintuitive thing around holds it all together, detecting and fixing errors.
Daniel Lidar, professor of electrical and computer engineering, chemistry, and physics and astronomy at the University of Southern California, with his daughter Nina, in haiku:
Quantum computers solve some problems much faster but are prone to noise
Superpositions: to explore multiple paths to the right answer
Interference helps: cancels paths to wrong answers and boosts the right ones
Entanglement makes classical computers sweat, QCs win the race
Scott Aaronson, professor of computer science at the University of Texas at Austin: A quantum computer exploits interference among positive and negative square roots of probabilities to solve certain problems much faster than we think possible classically, in a way that wouldnt be nearly so interesting were it possible to explain in the space of a tweet.
Alan Baratz, executive vice president of research and development at D-Wave Systems: If were honest, everything we currently know about quantum mechanics cant fully describe how a quantum computer works. Whats more important, and even more interesting, is what a quantum computer can do: A.I., new molecules, new materials, modeling climate change
Original post:
This Week in Tech: What on Earth Is a Quantum Computer? - The New York Times
Security leaders fear that quantum computing developments will outpace security technologies – Continuity Central
Posted: at 4:45 am
Details Published: Wednesday, 11 December 2019 07:59
More than half (54 percent) of cyber security professionals have expressed concerns that quantum computing will outpace the development of security technologies, according to new research from the Neustar International Security Council (NISC). Keeping a watchful eye on developments, 74 percent of organizations said that they are paying close attention to the technologys evolution, with 21 percent already experimenting with their own quantum computing strategies.
A further 35 percent of experts claimed to be in the process of developing a quantum strategy, while just 16 percent said they were not yet thinking about it. This shift in focus comes as the vast majority (73 percent) of cyber security professionals expect advances in quantum computing to overcome legacy technologies, such as encryption, within the next five years. Almost all respondents (93 percent) believe the next-generation computers will overwhelm existing security technology, with just 7 percent under the impression that true quantum supremacy will never happen.
Despite expressing concerns that other technologies will be overshadowed, an overwhelming number (87 percent) of CISOs, CSOs, CTOs and security directors are excited about the potential positive impact of quantum computing. The remaining 13 percent were more cautious and under the impression that the technology would create more harm than good.
At the moment, we rely on encryption, which is possible to crack in theory, but impossible to crack in practice, precisely because it would take so long to do so, over timescales of trillions or even quadrillions of years, said Rodney Joffe, Chairman of NISC and Security CTO at Neustar. Without the protective shield of encryption, a quantum computer in the hands of a malicious actor could launch a cyber attack unlike anything weve ever seen.
For both todays major attacks, and also the small-scale, targeted threats that we are seeing more frequently, it is vital that IT professionals begin responding to quantum immediately. The security community has already launched a research effort into quantum-proof cryptography, but information professionals at every organization holding sensitive data should have quantum on their radar. Quantum computing's ability to solve our great scientific and technological challenges will also be its ability to disrupt everything we know about computer security. Ultimately, IT experts of every stripe will need to work to rebuild the algorithms, strategies, and systems that form our approach to cyber security, added Joffe.
Go here to see the original:
Inside the weird, wild, and wondrous world of quantum video games – Digital Trends
Posted: at 4:45 am
Back to Menu By Luke Dormehl December 10, 2019 3:00AM PST Close IBM Research
In 1950, a man named John Bennett, an Australian employee of the now-defunct British technology firm Ferranti, created what may be historys first gaming computer. It could play a game called Nim, a long-forgotten parlor game in which players take turns removing matches from several piles. The player who loses is the one who removes the last match. For his computerized version, Bennett created a vast machine 12 feet wide, 5 feet tall, and 9 feet deep. The majority of this space was taken up by light-up vacuum tubes which depicted the virtual matches.
Bennetts aim wasnt to create a game-playing machine for the sake of it; the reason that somebody might build a games PC today. As writer Tristan Donovan observed in Replay, his superlative 2010 history of video games: Despite suggesting Ferranti create a game-playing computer, Bennetts aim was not to entertain but to show off the ability of computers to do [math].
Jump forward almost 70 years and a physicist and computer scientist named Dr. James Robin Wootton is using games to demonstrate the capabilities of another new, and equally large, experimental computer. The computer in this question is a quantum computer, a dream of scientists since the 1980s, now finally becoming a scientific reality.
Quantum computers encode information as delicate correlations with an incredibly rich structure. This allows for potentially mind-boggling densities of information to be stored and manipulated. Unlike a classical computer, which encodes as a series of ones and zeroes, the bits (called qubits) in a quantum computer can be either a one, a zero, or both at the same time. These qubits are composed of subatomic particles, which conform to the rules of quantum rather than classical mechanics. They play by their own rules a little bit like Tom Cruises character Maverick from Top Gun if he spent less time buzzing the tower and more time demonstrating properties like superpositions and entanglement.
I met Wootton at IBMs research lab in Zurich on a rainy day in late November. Moments prior, I had squeezed into a small room with a gaggle of other excited onlookers, where we stood behind a rope and stared at one of IBMs quantum computers like people waiting to be allowed into an exclusive nightclub. I was reminded of the way that people, in John Bennetts day, talked about the technological priesthood surrounding computers: then enormous mainframes sequestered away in labyrinthine chambers, tended to by highly qualified people in white lab coats. Lacking the necessary seminary training, we quantum computer visitors could only bask in its ambience from a distance, listening in reverent silence to the weird vee-oing vee-oing vee-oing sound of its cooling system.
Wottons interest in quantum gaming came about from exactly this scenario. In 2016, he attended a quantum computing event at the same Swiss ski resort where, in 1925, Erwin Schrdinger had worked out his famous Schrdinger wave equation while on vacation with a girlfriend. If there is a ground zero for quantum computing, this was it. Wotton was part of a consortium, sponsored by the Swiss government, to do (and help spread the word about) quantum computing.
At that time quantum computing seemed like it was something that was very far away, he told Digital Trends. Companies and universities were working on it, but it was a topic of research, rather than something that anyone on the street was likely to get their hands on. We were talking about how to address this.
Wootton has been a gamer since the early 1990s. I won a Game Boy in a competition in a wrestling magazine, he said. It was a Slush Puppy competition where you had to come up with a new flavor. My Slush Puppy flavor was called something like Rollin Redcurrant. Im not sure if you had to use the adjective. Maybe thats what set me apart.
While perhaps not a straight path, Wootton knew how an interest in gaming could lead people to an interest in other aspects of technology. He suggested that making games using quantum computing might be a good way of raising public awareness of the technology.He applied for support and, for the next year, was given to my amazement the chance to go and build an educational computer game about quantum computing. At the time, a few people warned me that this was not going to be good for my career, he said. [They told me] I should be writing papers and getting grants; not making games.
But the idea was too tantalizing to pass up.
That same year, IBM launched its Quantum Experience, an online platform granting the general public (at least those with a background in linear algebra) access to IBMs prototype quantum processors via the cloud. Combined with Project Q, a quantum SDK capable of running jobs on IBMs devices, this took care of both the hardware and software component of Woottons project. What he needed now was a game. Woottons first attempt at creating a quantum game for the public was a version of the game Rock-Paper-Scissors, named Cat-Box-Scissors after the famous Schrdingers cat thought experiment. Wootton later dismissed it as [not] very good Little more than a random number generator with a story.
But others followed. There was Battleships, his crack at the first multiplayer game made with a quantum computer. There was Quantum Solitaire. There was a text-based dungeon crawler, modeled on 1973s Hunt the Wumpus, called Hunt the Quantpus. Then the messily titled, but significant, Battleships with partial NOT gates, which Wootton considers the first true quantum computer game, rather than just an experiment. And so on. As games, these dont exactly make Red Dead Redemption 2 look like yesterdays news. Theyre more like Atari 2600 or Commodore 64 games in their aesthetics and gameplay. Still, thats exactly what youd expect from the embryonic phases of a new computing architecture.
If youd like to try out a quantum game for yourself, youre best off starting with Hello Quantum, available for both iOS and Android. It reimagines the principles of quantum computing as a puzzle game in which players must flip qubits. It wont make you a quantum expert overnight, but it will help demystify the process a bit. (With every level, players can hit a learn more button for a digestible tutorial on quantum basics.)
Quantum gaming isnt just about educational outreach, though. Just as John Bennett imagined Nim as a game that would exist to show off a computers abilities, only to unwittingly kickstart a $130 billion a year industry, so quantum games are moving beyond just teaching players lessons about quantum computing.Increasingly, Wootton is excited about what he sees as real world uses for quantum computing. One of the most promising of these is taking advantage of quantum computings random number generating to create random terrain within computer games. In Zurich, he showed me a three-dimensional virtual landscape reminiscent of Minecraft. However, while much of the world of Minecraft is user generated, in this case the blocky, low-resolution world was generated using a quantum computer.
Quantum mechanics is known for its randomness, so the easiest possibility is just to use quantum computing as a [random number generator], Wootton said. I have a game in which I use only one qubit: the smallest quantum computer you can get. All you can do is apply operations that change the probabilities of getting a zero or one as output. I use that to determine the height of the terrain at any point in the game map.
Plenty of games made with classical computers have already included procedurally generated elements over the years. But as the requirements for these elements ranging from randomly generated enemies to entire maps increase in complexity, quantum could help.
Gaming is an industry that is very dependent on how fast things run
Gaming is an industry that is very dependent on how fast things run, he continued. If theres a factor of 10 difference in how long it takes something to run that determines whether you can actually use it in a game. He sees today as a great jumping-on point for people in the gaming industry to get involved to help shape the future development of quantum computing. Its going to be driven by what people want, he explained. If people find an interesting use-case and everyone wants to use quantum computing for a game where you have to submit a job once per frame, that will help dictate the way that the technology is made.
Hes now reached the point where he thinks the race may truly be on to develop the first commercial game using a quantum computer. Weve been working on these proof-of-principle projects, but now I want to work with actual game studios on actual problems that they have, he continued. That means finding out what they want and how they want the technology to be [directed].
One thing thats for certain is that Wootton is no longer alone in developing his quantum games. In the last couple of years, a number ofquantum game jams have popped up around the world. What most people have done is to start small, Wootton said. They often take an existing game and use one or two qubits to help allow you to implement a quantum twist on the game mechanics. Following this mantra, enthusiasts have used quantum computing to make remixed versions of existing games, including Dr. Qubit (a quantum version of Dr. Mario), Quantum Cat-sweeper (a quantum version of Minesweeper), and Quantum Pong (a quantum version of, err, Pong).
The world of quantum gaming has moved beyond its 1950 equivalent of Nim. Now we just have to wait and see what happens next. The decades which followed Nim gave us MITs legendary Spacewar in the 1960s, the arcade boom of the 1970s and 80s, the console wars of Sega vs. Nintendo, the arrival of the Sony PlayStation in the 1990s, and so on. In the process, classical computers became part of our lives in a way they never were before. As Whole Earth Catalog founder Stewart Brand predicted as far back as 1972 Rolling Stone in his classic essay on Spacewar: Ready or not, computers are coming to the people.
At present, quantum gamings future is at a crossroads. Is it an obscure niche occupied by just a few gaming physics enthusiasts or a powerful tool that will shape tomorrows industry? Is it something that will teach us all to appreciate the finer points of quantum physics or a tool many of us wont even realize is being used, that will nevertheless give us some dope ass games to play?
Like Schrdingers cat, right now its both at once. What a superposition to be in.
Show More
Continued here:
Inside the weird, wild, and wondrous world of quantum video games - Digital Trends
Why Move Fast and Break Things Doesn’t Work Anymore – Harvard Business Review
Posted: at 4:45 am
Executive Summary
Over the next few decades, agility will not come from speed; it will come from the ability to explore multiple domains at once and combine them into something that produces value. This means computer scientists working with cancer scientists, for example, to identify specific genetic markers that could lead to a cure. This change will be profound and we will need to rethink old notions about how we compete, collaborate, and bring new products to market. Here are three key shifts.
For the past few decades, agility in the technology sector has largely meant moving faster and faster down a predetermined path; innovation has largely been driven by our ability to cram more transistors onto a silicon wafer. With every new generation of chips came new possibilities and new applications. The firms that developed those applications the fastest won.
Over the coming decades, however, agility will take on a new meaning: the ability to explore multiple domains at once and combine them into something that produces value. Well need computer scientists working with cancer scientists, for example, to identify specific genetic markers that could lead to a cure. To do this, well need to learn how to go slower to have a greater impact.
This change will be profound. We will need to rethink old notions about how we compete, collaborate, and bring new products to market. More specifically, we will have to manage three profound shifts that will force us to widen and deepen connections between talent, technology, and information rather than just moving fast and breaking things.
Shift 1: From A Digital To A Post-Digital Age. Its hard to imagine that 30 years ago, most American households didnt have a computer, much less a mobile phone. Yet today, a typical teenager armed with a smartphone has access to more information than a highly trained specialist working at a major institution a generation ago.
Whats driven all this advancement has been Moores Law, our ability to double the power of our computing technology about every 18 months. Yet now Moores Law is approaching theoretical limits and will most likely come to an end in the next decade. New computing architectures, such as quantum and neuromorphic technologies, have great potential to further advancement, but will be far more complex than digital chips. Make no mistake, the transition will not be seamless.
At the same time, were seeing the rise of nascent technologies, such as synthetic biology, advanced materials science and artificial intelligence. Again, these new technologies represent a significant increase in complexity. Were rapidly moving from an environment where we understand the technologies we use and their implications extremely well to an era in which we do not. If we continue to move fast and break things, we are likely to break something important.
Shift 2: From Rapid Iteration to Exploration. Over the past 30 years, weve had the luxury of working with technologies we understand extremely well. Every generation of microchips opened vast new possibilities, but worked exactly the same way as the last generation, creating minimal switching costs. The main challenge was to design applications.
So it shouldnt be surprising that rapid iteration emerged as a key strategy. When you understand the fundamental technology that underlies a product or service, you can move quickly, trying out nearly endless permutations until you arrive at an optimized solution. Thats often far more effective than a more planned, deliberate approach.
Over the next decade or two, however, the challenge will be to advance technology that we dont understand well at all. Quantum and neuromorphic computing are still in their nascent stages. Exponential improvements in genomics and materials science are redefining the boundaries of those fields. There are also ethical issues involved with artificial intelligence and genomics that will require us to tread carefully.
So in the future, we will need to put greater emphasis on exploration. We will need to spend time understanding these new technologies and how they relate to our businesses. Most of all, its imperative to start exploring early. By the time many of these technologies hit their stride, it may be too late to catch up.
Shift 3: From Hypercompetition to Mass Collaboration.The competitive environment weve become used to has been relatively simple. For each particular industry, there have been distinct ecosystems based on established fields of expertise. Competing firms raced to transform fairly undifferentiated digital inputs (chips, code, components, etc.) into highly differentiated products and services. You needed to move fast to get an edge.
This new era, on the other hand, will be one of mass collaboration in which government partners with academia and industry to explore new technologies in the pre-competitive phase. For example, the Joint Center for Energy Storage Research combines the work of five national labs, a few dozen academic institutions, and hundreds of companies to develop advanced batteries.
Or consider the Manufacturing Institutes, which focus on everything from advanced fabrics and biopharmaceuticals to robotics and composite materials. These active hubs allow companies to collaborate with government labs and top academics to develop the next generation of technologies. They also operate dozens of testing facilities to help bring new products to market faster.
Ive visited some of these facilities and have had the opportunity to talk with executives from participating companies. What has struck me is how how excited they are for the possibilities of this new era. Agility for them doesnt mean learning to run faster down a chosen course, but to widen and deepen connections throughout a technological ecosystem.
Not so long ago, this kind of mass collaboration, often involving direct competitors would have seemed strange, if not hopelessly naive. Yet today, high performing firms from corporate VCs to corporate accelerators are increasingly aware that they need to connect or get shut out. One example is especially instructive. When IBM decided to develop the PC in 1980, they sent a team to Boca Raton to work in secret and launched the product a year later. To develop quantum computing, however, theyve created a Q Network, which includes several of the National Labs, research universities, potential end users like major banks and manufacturers as well as startups.
Whats becoming increasingly clear is that the breakthrough applications of the future will not be based on a single technology like a digital microchip. These new technologies are far too complex for anyone to develop on their own. Thats why we can expect the basis of competition to shift away from design sprints, iterating, and pivoting to building meaningful relationships in order to solve grand challenges. Power in this new era will not sit at the top of industrial hierarchies, but will emanate from the center of networks and ecosystems.
Read the rest here:
Why Move Fast and Break Things Doesn't Work Anymore - Harvard Business Review