MuZero figures out chess, rules and all – Chessbase News
Posted: December 13, 2019 at 6:48 pm
12/12/2019 Just imagine you had a chess computer the auto-sensor kind. Would someone who had no knowledge of the game be able to work it out, just by moving pieces. Or imagine you are a very powerful computer. By looking at millions of images of chess games would you be able to figure out the rules and learn to play the game proficiently? The answer is yes because that has just been done by Google's Deep Mind team. For chess and 76 other games. It is interesting, and slightly disturbing. | Graphic: DeepMind
ChessBase 15 - Mega package
Find the right combination! ChessBase 15 program + new Mega Database 2020 with 8 million games and more than 80,000 master analyses. Plus ChessBase Magazine (DVD + magazine) and CB Premium membership for 1 year!
More...
In 1980 the first chess computer with an auto response board, the Chafitz ARB Sargon 2.5, was released. It was programmed by Dan and Kathe Spracklen and had a sensory board and magnet pieces. The magnets embedded in the pieces were all the same kind, so that the board could only detect whether there was a piece on the square or not. It would signal its moves with LEDs located on the corner of each square.
Chafitz ARB Sargon 2.5 | Photo:My Chess Computers
Some years after the release of this computer I visited the Spracklens in their home in San Diego, and one evening had an interesting discussion, especially with Kathy. What would happen, we wondered, if we set up a Sargon 2.5 in a jungle village where nobody knew chess. If we left the people alone with the permanently switched-on board and pieces, would they be able to figure out the game? If they lifted a piece, the LED on that square would light up; if they put it on another square that LED would light up briefly. If the move was legal, there would be a reassuring beep; the square of a piece of the opposite colour would light up, and if they picked up that piece another LED would light up. If the original move wasnt legal, the board would make an unpleasant sound.
Our question was: could they figure out, by trial and error, how chess was played? Kathy and I discussed it at length, over the Sargon board, and in the end came to the conclusion that it was impossible they could never figure out the game without human instructions. Chess is far too complex.
Now, three decades later, I have to modify our conclusion somewhat: maybe humans indeed cannot learn chess by pure trial and error, but computers can...
You remember how AlphaGo and AlphaZero were created, by Google's DeepMind division. The programs Leela and Fat Fritz were generated using the same principle: tell an AI program the rules of the game, how the pieces move, and then let it play millions of games against itself. The program draws its own conclusions about the game and starts to play master-level chess. In fact, it can be argued that these programs are the strongest entities to have ever played chess human or computer.
Now DeepMind has come up with a fairly atrocious (but scientifically fascinating) idea: instead of telling the AI software the rules of the game, just let it play, using trial and error. Let it teach itself the rules of the game, and in the process learn to play it professionally. DeepMind combined a tree-based search (where a tree is a data structure used for locating information from within a set) with a learning model. They called the project MuZero. The program must predict the quantities most relevant to game planning not just for chess, but for 57 different Atari games. The result: MuZero, we are told, matches the performance of AlphaZero in Go, chess, and shogi.
And this is how MuZero works (description from VenturBeat):
Fundamentally MuZero receives observations images of a Go board or Atari screen and transforms them into a hidden state. This hidden state is updated iteratively by a process that receives the previous state and a hypothetical next action, and at every step the model predicts the policy (e.g., the move to play), value function (e.g., the predicted winner), and immediate reward (e.g., the points scored by playing a move)."
Evaluation of MuZero throughout training in chess, shogi, Go, and Atari the y-axis shows Elo rating| Image: DeepMind
As the DeepMind researchers explain, one form of reinforcement learning the technique in which rewards drive an AI agent toward goals involves models. This form models a given environment as an intermediate step, using a state transition model that predicts the next step and a reward model that anticipates the reward. If you are interested in this subject you can read thearticle on VenturBeat,or visit the Deep Mind site. There you can read this paper on the general reinforcement learning algorithm that masters chess, shogi and Go through self-play. Here's an abstract:
The game of chess is the longest-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. By contrast, the AlphaGo Zero program recently achieved superhuman performance in the game of Go by reinforcement learning from self-play. In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve superhuman performance in many challenging games. Starting from random play and given no domain knowledge except the game rules, AlphaZero convincingly defeated a world champion program in the games of chess and shogi (Japanese chess), as well as Go.
That refers to the original AlphaGo development, which has now been extended to MuZero. Turns out it is possible not just to become highly proficient at a game by playing it a million times against yourself, but in fact it is possible to work out the rules of the game by trial and error.
I have just now learned about this development and need to think about the consequences discuss it with experts. My first somewhat flippant reaction to a member of the Deep Mind team: "What next? Show it a single chess piece and it figures out the whole game?"
See more here:
MuZero figures out chess, rules and all - Chessbase News
- This 90's Japanese commercial for Street Fighter Alpha 2 doesn't make a ton of sense, but it somehow still makes us want to play some Alpha -... [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Artificial intelligence: How to measure the I in AI - TechTalks [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- Doubting The AI Mystics: Dramatic Predictions About AI Obscure Its Concrete Benefits - Forbes [Last Updated On: December 9th, 2019] [Originally Added On: December 9th, 2019]
- From AR to AI: The emerging technologies marketers can explore to enable and disrupt - Marketing Tech [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- John Robson: Why is man so keen to make man obsolete? - National Post [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- Artificial intelligence in the arms race: Commentary by Avi Ben Ezra - Augusta Free Press [Last Updated On: February 9th, 2020] [Originally Added On: February 9th, 2020]
- Explained: The Artificial Intelligence Race is an Arms Race - The National Interest Online [Last Updated On: February 9th, 2020] [Originally Added On: February 9th, 2020]
- Google's DeepMind effort for COVID-19 coronavirus is based on the shoulders of giants - Mashviral News - Mash Viral [Last Updated On: March 8th, 2020] [Originally Added On: March 8th, 2020]
- Fat Fritz 1.1 update and a small gift - Chessbase News [Last Updated On: March 8th, 2020] [Originally Added On: March 8th, 2020]
- Magnus Carlsen: "In my country the authorities reacted quickly and the situation is under control" - Sportsfinding [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- ACM Prize in Computing Awarded to AlphaGo Developer - HPCwire [Last Updated On: April 6th, 2020] [Originally Added On: April 6th, 2020]
- AlphaZero Crushes Stockfish In New 1,000-Game Match ... [Last Updated On: October 17th, 2020] [Originally Added On: October 17th, 2020]
- AlphaGo Zero - Wikipedia [Last Updated On: October 17th, 2020] [Originally Added On: October 17th, 2020]
- AlphaZero: Shedding new light on chess, shogi, and Go ... [Last Updated On: October 17th, 2020] [Originally Added On: October 17th, 2020]
- AlphaZero - Wikipedia [Last Updated On: October 17th, 2020] [Originally Added On: October 17th, 2020]
- When 3 is greater than 5 - Chessbase News [Last Updated On: October 22nd, 2020] [Originally Added On: October 22nd, 2020]
- Facebook AI Introduces 'ReBeL': An Algorithm That Generalizes The Paradigm Of Self-Play Reinforcement Learning And Search To Imperfect-Information... [Last Updated On: December 14th, 2020] [Originally Added On: December 14th, 2020]
- AI has almost solved one of biologys greatest challenges how protein unfolds - ThePrint [Last Updated On: December 14th, 2020] [Originally Added On: December 14th, 2020]
- Scientists say dropping acid can help with social anxiety and alcoholism - The Next Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Toronto scientists help create AI-powered bot that can play chess like a human - blogTO [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- This AI chess engine aims to help human players rather than defeat them - The Next Web [Last Updated On: January 31st, 2021] [Originally Added On: January 31st, 2021]
- Artificial Intelligence, and the Future of Work Should We Be Worried? - BBN Times [Last Updated On: October 21st, 2021] [Originally Added On: October 21st, 2021]
- What Happened in Reinforcement Learning in 2021 - Analytics India Magazine [Last Updated On: November 14th, 2021] [Originally Added On: November 14th, 2021]
- How AI is impacting the video game industry - ZME Science [Last Updated On: December 15th, 2021] [Originally Added On: December 15th, 2021]
- Quest Pro is here, Google and Valve report back - MIXED Reality News [Last Updated On: October 20th, 2022] [Originally Added On: October 20th, 2022]
- AI now not only debates with humans but negotiates and cajoles too - Mint [Last Updated On: November 26th, 2022] [Originally Added On: November 26th, 2022]
- Newspoll quarterly aggregates: July to December (open thread ... - The Poll Bludger [Last Updated On: December 29th, 2022] [Originally Added On: December 29th, 2022]
- MPL 59th National Senior R3: The Systematic Pawn Structure ... - ChessBase India [Last Updated On: December 29th, 2022] [Originally Added On: December 29th, 2022]
- Personality traits and decision-making styles among obstetricians ... - Nature.com [Last Updated On: April 6th, 2023] [Originally Added On: April 6th, 2023]
- What Brains of the Past Teach Us About the AI of the Future - Next Big Idea Club Magazine [Last Updated On: November 26th, 2023] [Originally Added On: November 26th, 2023]