How to overcome the limitations of AI – TechTarget
Posted: February 20, 2020 at 9:45 am
The 2010s gave rise to a number of tech bubbles, and the threat of those bubbles bursting in 2020 is resurfacing nightmares for some in the tech community of dot-com-era busts. One such bubble could be AI.
Yet, some of today's most successful tech companies -- Google chief among them -- grew out of the shattered landscape of the post-dot-com tech scene. The same pattern could play out in AI. Even if the current AI bubble does burst, there will most likely continue to be successful companies offering impactful tools.
Some experts claim we are in an "AI autumn," as the technology that once was feared for its potential to wipe out broad swaths of jobs has fallen short of its expected potential in many categories. Yet, underestimating the benefits of AI is a huge mistake, as various machine learning technologies are already providing value to businesses. But, given the limitations of AI, how can we get to a future where the technology has the world-changing impact that was previously expected?
Google's AlphaGo Zero forced the current world champion of the game Go into early retirement. In Lee Se-dol's own words, AI is "an entity that cannot be defeated." Using reinforcement learning, the AI played millions of games against itself at superhuman speed -- a number humans can't match in a lifetime of gameplay. The hardware costs for AlphaGo Zero also go up to $25 million.
However, the new world champion would fall flat on its face with the tiniest change to the game's rules. It also can't use its knowledge to master any other game. Humans are superior at applying existing knowledge to new tasks with limited data. This is something most AI pioneers agree upon.
"Current AI algorithms have enormous data requirements to learn the simplest tasks, and that puts a strict restriction on where they can be applied," said Abhimanyu, co-founder and CEO of Agara, which analyzes voice with the aid of AI to augment customer support operators. "While neural networks show superhuman performance, their predictions are sometimes wildly incorrect, so much that a human would never make a similar mistake."
As Jerome Pesenti, Facebook's head of AI, put it: The AI field is about to hit the wall. This begs the question: How can we build smarter AI?
Many experts believe improvements in hardware and algorithms are necessary to break that wall. Some even suggest that we need quantum computers.
Though deep learning and neural networks were developed to mimic how our neurons communicate, there is still much we don't know about the brain's inner workings, which outperforms thousands of CPUs and GPUs.
"Even our supercomputers are weaker than the human brain, which can run 1 exaflop calculations per second," Abhimanyu said. "However, since our algorithms have a long way to improve, it's hard to predict how much computation power we'd need."
More processing power doesn't generally equate to more intelligence. We can see this in the brainpower of various animals.
"As a simple proof point, there are animals with both much bigger brains and moreneurons than humans have," said Alan Majer, CEO and founder of AI and robotics development company Good Robot."So, if we wait for some kind of hardware tipping point, we're likely to be disappointed."
Recognizing the limitations of AI is the best thing we can do for the developing technology. While we are far off from human-level intelligence, companies are taking innovative approaches to overcome those constraints.
Explainable AI is one important approach.
AI has traditionally operated as a black box where the user feeds the questions and the algorithm throws out the answers. It was born from a need to program complex tasks, and no programmer was able to code all the logical decision variations. Thus, we let the AI learn by itself. However, this is about to change.
"Explainable, cognitive AI builds trust with people so humans and machines can work together in a collaborative, symbiotic way," said A.J. Abdallat, CEO of machine learning development company Beyond Limits. "Because explainable AI technologies are educated with knowledge, in addition to being trained with data, they understand how they solve the problem and the context that makes the information relevant."
The higher the potential stakes, the more important it is to know why AI arrived at a certain answer. "For example, NASA will not implement any system where you cannot explain how you got the answer and provide an audit trail," Abdallat explained.
Explainable AI gives us insight into the AI's decisions, improving the human-machine collaboration. However, this method does not work in all scenarios.
Consider self-driving cars, one of the benchmarks of our AI intelligence level. In fully autonomous vehicles, human operators are not enabled to aid the machine in split-second decisions. To solve this problem, experts adopt a hybrid approach.
"Waymo uses deep learning to detect pedestrians, but lidar and hardcoded programming add a safety net to prevent collisions," Abhimanyu explained. Developers use individual components that are not smart per se but can achieve smarter results when they are combined. By creating a smart design, developers challenge our understanding of the limitations of AI.
"The Google Duplex demo that amazed people is a really smart design coupled with state-of-the-art technology in speech-to-text and text-to-speech categories, which exploited what people look for in a smart human," Abhimanyu explained.
But these chatbots fail when it comes to natural conversations, which is still a challenging domain for AI. As an example, let's consider one of the major achievements in the past year, GPT-2, which stunned many with its content writing capabilities.
"GPT-2 can generate entire essays, but it is very hard to make it generate exactly what you want reliably and robustly in a live consumer setting," Abhimanyu shared. GPT-2 was trained on a huge library of quality documents from the internet, so it could predict what words should naturally follow a sentence or paragraph. But it had no idea what it was saying, nor could it be guided toward a certain direction. Experts believe being able to reliably and extensively control AI could mark the next step in our advancements.
The current AI algorithms were made possible on the back of big data -- that's why achieving this level of intelligence was not possible even with the best supercomputers decades ago. We are incrementally finding the next building blocks for smarter AI. Until we reach there, the most productive use of AI is on narrow domains where it outperforms humans.
Go here to see the original:
How to overcome the limitations of AI - TechTarget
- Facebooks Hanabi-playing AI achieves state-of-the-art results - VentureBeat [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Biggest scientific discoveries of the 2010s decade: photos - Business Insider [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- DeepMind co-founder moves to Google as the AI lab positions itself for the future - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- AlphaGo - Wikipedia [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- DeepMind Vs Google: The Inner Feud Between Two Tech Behemoths - Analytics India Magazine [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- AI is dangerous, but not for the reasons you think. - OUPblog [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- The Perils and Promise of Artificial Conscientiousness - WIRED [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- AI has bested chess and Go, but it struggles to find a diamond in Minecraft - The Verge [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- What is AlphaGo? - Definition from WhatIs.com [Last Updated On: December 22nd, 2019] [Originally Added On: December 22nd, 2019]
- What are neural-symbolic AI methods and why will they dominate 2020? - The Next Web [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- AlphaZero beat humans at Chess and StarCraft, now it's working with quantum computers - The Next Web [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Why asking an AI to explain itself can make things worse - MIT Technology Review [Last Updated On: January 29th, 2020] [Originally Added On: January 29th, 2020]
- Why The Race For AI Dominance Is More Global Than You Think - Forbes [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- AI on steroids: Much bigger neural nets to come with new hardware, say Bengio, Hinton, and LeCun - ZDNet [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- I think, therefore I am said the machine to the stunned humans - Innovation Excellence [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- From Deception to Attrition: AI and the Changing Face of Warfare - War on the Rocks [Last Updated On: February 20th, 2020] [Originally Added On: February 20th, 2020]
- Levels And Limits Of AI - Forbes [Last Updated On: February 20th, 2020] [Originally Added On: February 20th, 2020]
- The top 5 technologies that will change health care over the next decade - MarketWatch [Last Updated On: February 25th, 2020] [Originally Added On: February 25th, 2020]
- Chess grandmaster Gary Kasparov predicts AI will disrupt 96 percent of all jobs - The Next Web [Last Updated On: February 25th, 2020] [Originally Added On: February 25th, 2020]
- Enterprise AI Books to Read This Spring - DevOps.com [Last Updated On: March 14th, 2020] [Originally Added On: March 14th, 2020]
- The New ABCs: Artificial Intelligence, Blockchain And How Each Complements The Other - JD Supra [Last Updated On: March 14th, 2020] [Originally Added On: March 14th, 2020]
- The Turing Test is Dead. Long Live The Lovelace Test - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: April 8th, 2020] [Originally Added On: April 8th, 2020]
- QuickBooks is still the gold standard for small business accounting. Learn how it's done now. - The Next Web [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- This A.I. makes up gibberish words and definitions that sound astonishingly real - Digital Trends [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- The Hardware in Microsofts OpenAI Supercomputer Is Insane - ENGINEERING.com [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- Why the buzz around DeepMind is dissipating as it transitions from games to science - CNBC [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- AlphaGo (2017) - Rotten Tomatoes [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- AlphaGo - Top Documentary Films [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- Enterprise hits and misses - contactless payments on the rise, equality on the corporate agenda, and Zoom and Slack in review - Diginomica [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Is Dystopian Future Inevitable with Unprecedented Advancements in AI? - Analytics Insight [Last Updated On: June 26th, 2020] [Originally Added On: June 26th, 2020]
- Test your Python skills with these 10 projects - Best gaming pro [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- In the Know - UCI News [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- How to Understand if AI is Swapping Civilization - Analytics Insight [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- Investing in Artificial Intelligence (AI) - Everything You Need to Know - Securities.io [Last Updated On: November 2nd, 2020] [Originally Added On: November 2nd, 2020]
- What the hell is reinforcement learning and how does it work? - The Next Web [Last Updated On: November 2nd, 2020] [Originally Added On: November 2nd, 2020]
- An AI winter may be inevitable. What we should fear more: an AI ice age - ITProPortal [Last Updated On: December 4th, 2020] [Originally Added On: December 4th, 2020]
- Are Computers That Win at Chess Smarter Than Geniuses? - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: December 4th, 2020] [Originally Added On: December 4th, 2020]
- What are proteins and why do they fold? - DW (English) [Last Updated On: December 12th, 2020] [Originally Added On: December 12th, 2020]
- Are we ready for bots with feelings? Life Hacks by Charles Assisi - Hindustan Times [Last Updated On: December 12th, 2020] [Originally Added On: December 12th, 2020]
- Examining the world through signals and systems - MIT News [Last Updated On: February 10th, 2021] [Originally Added On: February 10th, 2021]
- How AI is being used for COVID-19 vaccine creation and distribution - TechRepublic [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- The 13 Best Deep Learning Courses and Online Training for 2021 - Solutions Review [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- Why AI That Teaches Itself to Achieve a Goal Is the Next Big Thing - Harvard Business Review [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- The Alpha of 'Go'. What is AlphaGo? | by Christopher Golizio | Apr, 2021 | Medium - Medium [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- How will Edge Artificial Intelligence (AI) Chips Take IoT Devices to the Next Level - Enterprise Apps Today [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- Machines with Minds? The Lovelace Test vs. the Turing Test - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- For AI to Be Creative, Here's What It Would Take - Discovery Institute [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- What is my chatbot thinking? Nothing. Here's why the Google sentient bot debate is flawed - Diginomica [Last Updated On: August 7th, 2022] [Originally Added On: August 7th, 2022]
- Incoherent, creepy and gorgeous: we asked six leading artists to make work using AI and here are the results - The Guardian [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- Top 5 Applications of Reinforcement Learning in Real-Life - Analytics Insight [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- OpenAI tweaks ChatGPT to avoid dangerous AI information - The Register [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- Go champion who faced off against Google's AlphaGo says the rise of AI strips the games of artistry - DIGITIMES [Last Updated On: April 4th, 2024] [Originally Added On: April 4th, 2024]