Examining the world through signals and systems – MIT News
Posted: February 10, 2021 at 9:52 pm
Theres a mesmerizing video animation on YouTube of simulated, self-driving traffic streaming through a six-lane, four-way intersection. Dozens of cars flow through the streets, pausing, turning, slowing, and speeding up to avoid colliding with their neighbors. And not a single car stopping. But what if even one of those vehicles was not autonomous? What if only one was?
In the coming decades, autonomous vehicles will play a growing role in society, whether keeping drivers safer, making deliveries, or increasing accessibility and mobility for elderly or disabled passengers.
But MIT Assistant Professor Cathy Wu argues that autonomous vehicles are just part of a complex transport system that may involve individual self-driving cars, delivery fleets, human drivers, and a range of last-mile solutions to get passengers to their doorstep not to mention road infrastructure like highways, roundabouts, and, yes, intersections.
Transport today accounts for about one-third of U.S. energy consumption. The decisions we make today about autonomous vehicles could have a big impact on this number ranging from a 40 percent decrease in energy use to a doubling of energy consumption.
So how can we better understand the problem of integrating autonomous vehicles into the transportation system? Equally important, how can we use this understanding to guide us toward better-functioning systems?
Wu, who joined the Laboratory for Information and Decision Systems (LIDS) and MIT in 2019, is the Gilbert W. Winslow Assistant Professor of Civil and Environmental Engineering as well as a core faculty member of the MIT Institute for Data, Systems, and Society. Growing up in a Philadelphia-area family of electrical engineers, Wu sought a field that would enable her to harness engineering skills to solve societal challenges.
During her years as an undergraduate at MIT, she reached out to Professor Seth Teller of the Computer Science and Artificial Intelligence Laboratory to discuss her interest in self-driving cars.
Teller, who passed away in 2014, met her questions with warm advice, says Wu. He told me, If you have an idea of what your passion in life is, then you have to go after it as hard as you possibly can. Only then can you hope to find your true passion.
Anyone can tell you to go after your dreams, but his insight was that dreams and ambitions are not always clear from the start. It takes hard work to find and pursue your passion.
Chasing that passion, Wu would go on to work with Teller, as well as in Professor Daniela Russ Distributed Robotics Laboratory, and finally as a graduate student at the University of California at Berkeley, where she won the IEEE Intelligent Transportation Systems Society's best PhD award in 2019.
In graduate school, Wu had an epiphany: She realized that for autonomous vehicles to fulfill their promise of fewer accidents, time saved, lower emissions, and greater socioeconomic and physical accessibility, these goals must be explicitly designed-for, whether as physical infrastructure, algorithms used by vehicles and sensors, or deliberate policy decisions.
At LIDS, Wu uses a type of machine learning called reinforcement learning to study how traffic systems behave, and how autonomous vehicles in those systems ought to behave to get the best possible outcomes.
Reinforcement learning, which was most famously used by AlphaGo, DeepMinds human-beating Go program, is a powerful class of methods that capture the idea behind trial-and-error given an objective, a learning agent repeatedly attempts to achieve the objective, failing and learning from its mistakes in the process.
In a traffic system, the objectives might be to maximize the overall average velocity of vehicles, to minimize travel time, to minimize energy consumption, and so on.
When studying common components of traffic networks such as grid roads, bottlenecks, and on- and off-ramps, Wu and her colleagues have found that reinforcement learning can match, and in some cases exceed, the performance of current traffic control strategies. And more importantly, reinforcement learning can shed new light toward understanding complex networked systems which have long evaded classical control techniques. For instance, if just 5 to 10 percent of vehicles on the road were autonomous and used reinforcement learning, that could eliminate congestion and boost vehicle speeds by 30 to 140 percent. And the learning from one scenario often translates well to others. These insights could one day soon help to inform public policy or business decisions.
In the course of this research, Wu and her colleagues helped improve a class of reinforcement learning methods called policy gradient methods. Their advancements turned out to be a general improvement to most existing deep reinforcement learning methods.
But reinforcement learning techniques will need to be continually improved to keep up with the scale and shifts in infrastructure and changing behavior patterns. And research findings will need to be translated into action by urban planners, auto makers and other organizations.
Today, Wu is collaborating with public agencies in Taiwan and Indonesia to use insights from her work to guide better dialogues and decisions. By changing traffic signals or using nudges to shift drivers behavior, are there other ways to achieve lower emissions or smoother traffic?
Im surprised by this work every day, says Wu. We set out to answer a question about self-driving cars, and it turns out you can pull apart the insights, apply them in other ways, and then this leads to new exciting questions to answer.
Wu is happy to have found her intellectual home at LIDS. Her experience of it is as a very deep, intellectual, friendly, and welcoming place. And she counts among her research inspirations MIT course 6.003 (Signals and Systems) a class she encourages everyone to take taught in the tradition of professors Alan Oppenheim (Research Laboratory of Electronics) and Alan Willsky (LIDS). The course taught me that so much in this world could be fruitfully examined through the lens of signals and systems, be it electronics or institutions or society, she says. I am just realizing as Im saying this, that I've been empowered by LIDS thinking all along!
Research and teaching through a pandemic havent been easy, but Wu is making the best of a challenging first year as faculty. (Ive been working from home in Cambridge my short walking commute is irrelevant at this point, she says wryly.) To unwind, she enjoys running, listening to podcasts covering topics ranging from science to history, and reverse-engineering her favorite Trader Joes frozen foods.
Shes also been working on two Covid-related projects born at MIT: One explores how data from the environment, such as data collected by internet-of-things-connected thermometers, can help identify emerging community outbreaks. Another project asks if its possible to ascertain how contagious the virus is on public transport, and how different factors might decrease the transmission risk.
Both are in their early stages, Wu says. We hope to contribute a bit to the pool of knowledge that can help decision-makers somewhere. Its been very enlightening and rewarding to do this and see all the other efforts going on around MIT.
Original post:
Examining the world through signals and systems - MIT News
- Facebooks Hanabi-playing AI achieves state-of-the-art results - VentureBeat [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Biggest scientific discoveries of the 2010s decade: photos - Business Insider [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- DeepMind co-founder moves to Google as the AI lab positions itself for the future - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- AlphaGo - Wikipedia [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- DeepMind Vs Google: The Inner Feud Between Two Tech Behemoths - Analytics India Magazine [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- AI is dangerous, but not for the reasons you think. - OUPblog [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- The Perils and Promise of Artificial Conscientiousness - WIRED [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- AI has bested chess and Go, but it struggles to find a diamond in Minecraft - The Verge [Last Updated On: December 18th, 2019] [Originally Added On: December 18th, 2019]
- What is AlphaGo? - Definition from WhatIs.com [Last Updated On: December 22nd, 2019] [Originally Added On: December 22nd, 2019]
- What are neural-symbolic AI methods and why will they dominate 2020? - The Next Web [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- AlphaZero beat humans at Chess and StarCraft, now it's working with quantum computers - The Next Web [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Why asking an AI to explain itself can make things worse - MIT Technology Review [Last Updated On: January 29th, 2020] [Originally Added On: January 29th, 2020]
- Why The Race For AI Dominance Is More Global Than You Think - Forbes [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- AI on steroids: Much bigger neural nets to come with new hardware, say Bengio, Hinton, and LeCun - ZDNet [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- I think, therefore I am said the machine to the stunned humans - Innovation Excellence [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- From Deception to Attrition: AI and the Changing Face of Warfare - War on the Rocks [Last Updated On: February 20th, 2020] [Originally Added On: February 20th, 2020]
- Levels And Limits Of AI - Forbes [Last Updated On: February 20th, 2020] [Originally Added On: February 20th, 2020]
- How to overcome the limitations of AI - TechTarget [Last Updated On: February 20th, 2020] [Originally Added On: February 20th, 2020]
- The top 5 technologies that will change health care over the next decade - MarketWatch [Last Updated On: February 25th, 2020] [Originally Added On: February 25th, 2020]
- Chess grandmaster Gary Kasparov predicts AI will disrupt 96 percent of all jobs - The Next Web [Last Updated On: February 25th, 2020] [Originally Added On: February 25th, 2020]
- Enterprise AI Books to Read This Spring - DevOps.com [Last Updated On: March 14th, 2020] [Originally Added On: March 14th, 2020]
- The New ABCs: Artificial Intelligence, Blockchain And How Each Complements The Other - JD Supra [Last Updated On: March 14th, 2020] [Originally Added On: March 14th, 2020]
- The Turing Test is Dead. Long Live The Lovelace Test - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: April 8th, 2020] [Originally Added On: April 8th, 2020]
- QuickBooks is still the gold standard for small business accounting. Learn how it's done now. - The Next Web [Last Updated On: April 19th, 2020] [Originally Added On: April 19th, 2020]
- This A.I. makes up gibberish words and definitions that sound astonishingly real - Digital Trends [Last Updated On: May 17th, 2020] [Originally Added On: May 17th, 2020]
- The Hardware in Microsofts OpenAI Supercomputer Is Insane - ENGINEERING.com [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- Why the buzz around DeepMind is dissipating as it transitions from games to science - CNBC [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- AlphaGo (2017) - Rotten Tomatoes [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- AlphaGo - Top Documentary Films [Last Updated On: June 5th, 2020] [Originally Added On: June 5th, 2020]
- Enterprise hits and misses - contactless payments on the rise, equality on the corporate agenda, and Zoom and Slack in review - Diginomica [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Is Dystopian Future Inevitable with Unprecedented Advancements in AI? - Analytics Insight [Last Updated On: June 26th, 2020] [Originally Added On: June 26th, 2020]
- Test your Python skills with these 10 projects - Best gaming pro [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- In the Know - UCI News [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- How to Understand if AI is Swapping Civilization - Analytics Insight [Last Updated On: October 3rd, 2020] [Originally Added On: October 3rd, 2020]
- Investing in Artificial Intelligence (AI) - Everything You Need to Know - Securities.io [Last Updated On: November 2nd, 2020] [Originally Added On: November 2nd, 2020]
- What the hell is reinforcement learning and how does it work? - The Next Web [Last Updated On: November 2nd, 2020] [Originally Added On: November 2nd, 2020]
- An AI winter may be inevitable. What we should fear more: an AI ice age - ITProPortal [Last Updated On: December 4th, 2020] [Originally Added On: December 4th, 2020]
- Are Computers That Win at Chess Smarter Than Geniuses? - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: December 4th, 2020] [Originally Added On: December 4th, 2020]
- What are proteins and why do they fold? - DW (English) [Last Updated On: December 12th, 2020] [Originally Added On: December 12th, 2020]
- Are we ready for bots with feelings? Life Hacks by Charles Assisi - Hindustan Times [Last Updated On: December 12th, 2020] [Originally Added On: December 12th, 2020]
- How AI is being used for COVID-19 vaccine creation and distribution - TechRepublic [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- The 13 Best Deep Learning Courses and Online Training for 2021 - Solutions Review [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- Why AI That Teaches Itself to Achieve a Goal Is the Next Big Thing - Harvard Business Review [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- The Alpha of 'Go'. What is AlphaGo? | by Christopher Golizio | Apr, 2021 | Medium - Medium [Last Updated On: April 24th, 2021] [Originally Added On: April 24th, 2021]
- How will Edge Artificial Intelligence (AI) Chips Take IoT Devices to the Next Level - Enterprise Apps Today [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- Machines with Minds? The Lovelace Test vs. the Turing Test - Walter Bradley Center for Natural and Artificial Intelligence [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- For AI to Be Creative, Here's What It Would Take - Discovery Institute [Last Updated On: July 6th, 2022] [Originally Added On: July 6th, 2022]
- What is my chatbot thinking? Nothing. Here's why the Google sentient bot debate is flawed - Diginomica [Last Updated On: August 7th, 2022] [Originally Added On: August 7th, 2022]
- Incoherent, creepy and gorgeous: we asked six leading artists to make work using AI and here are the results - The Guardian [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- Top 5 Applications of Reinforcement Learning in Real-Life - Analytics Insight [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- OpenAI tweaks ChatGPT to avoid dangerous AI information - The Register [Last Updated On: December 4th, 2022] [Originally Added On: December 4th, 2022]
- Go champion who faced off against Google's AlphaGo says the rise of AI strips the games of artistry - DIGITIMES [Last Updated On: April 4th, 2024] [Originally Added On: April 4th, 2024]